如何用密码学解决数据治理问题?

最近得益于区块链在金融领域的火爆效应,Crypto-based currency&transaction改变了金融圈原本“数字货币=数字游戏”的印象,密码学货币不再只是数字货币,它还被赋予了“防篡改、去中心”的特性,但是本质上这些事务都是数据治理问题,只不过从原本的“服务级别”的访问权限校验转入了“数据级别”的完整性校验。其实密码学不只可以在金融业务方面做出贡献,在其他一系列数据治理难题中,我们也可以借鉴其中的一些思路。

下面让我们来回顾一些常见的数据治理问题,以及我们如何使用密码学来解决这些问题。

数据私密性

私密性(Confidentiality),数据作为企业的重要财产已经得到足够的重视,同时作为业务必须的原料又不得不分发到终端。我们既要做好必要的安全防护工作,同时也希望尽可能地灵活管理访问权限,在需要的时候能及时地送达业务场景中消化。

这个防护工作的目的也就是保护数据的私密性。通常有两种方式保障,授权与加密,随着数据量级的增长,私密性变得越来越细粒度。如何划分授权与加密这两种有着明确区分的方案往往被大家混淆,甚至不少开发人员认为授权是加密的一种。

常见的授权(Authorization),包含了验证(Authentication)与访问控制(Access Control)两个部分,验证是指用户或者业务模块通过一个私密的凭证来确保身份,它可以是一个密码,可以是一类数字签名(包括证书),也可以使用相对复杂的双向动态授权协议。

验证后的访问控制则是将数据权限更细粒度地拆分,提供一次性或者短暂性的访问权限,Token作为一个权证只能用来访问其对应权限下的数据,可以防止私密数据过量泄露。而目前一些新的方法中,权证分发本身被改善成了一个数字签名的过程,通过完全的非对称密码系统,让数据提供方原本需要保存的Token,转变为只需要验证访问请求所携带的数字签名就可以获知权限的Certificate/Signature,例如Hyperledger区块链平台就采用这种方式,分别签发Enrollment Certificate和Transaction Certificate为不同的业务场景提供不同的数据访问权限。

授权方案的发展历经了几个阶段(如上图),虽然和出现时间并没有太大关系,TLS早就定义了第三种形式作为分发证书链的模式,我们可以看到在第二种方案中,通过采用token的授权,使得细粒度的授权分发可以和验证分离开来。而第三种方案则更进一步,让双方不需要再传输存储授权凭证,而且整个授权过程可以是一次性的,而不会影响到数据访问。

随着高阶密码学原语的引入,我们甚至可以在验证授权的过程中为用户的访问提供隐私保护,例如通过Dual Receiver Encryption配合Ring Signature可以实现匿名组策略等效果。

加密(Encryption),往往是较为耗时和受限制的数据治理手段,尤其是非对称加密算法,只能针对少量的数据集执行,而对称加密又存在交换秘钥、存储管理秘钥时的隐患。因此作为保护数据私密性的最后手段,我们应该尽量避免滥用误用,常见的误用场景包括试图通过在客户端加密Token来防止用户篡改数据访问权限、试图用加密应用代码的方式保护数据、试图仅依靠对称加密分发数据等等。

常见的加密确保私密性,常常是基于“数据被盗”或者“数据集必须存放在用户端”的假设,“数据被盗”决定了每个数据池都有必要对基础设施进行预防,例如对硬盘加密、选择安全的通信信道和协议、避免秘钥泄露、避免系统人为操作、避免内网服务对外开放、减少私有网络的威胁等等。而“数据集必须存放在用户端”则需要考虑到恶意软件、逆向工程、暴力破解可能造成的数据损失。

数据完整性

完整性(Integrity),说到区块链的一大卖点就是不可篡改,通过确定交易双方身份的Signature、交易顺序的Merkel Hash tree、Block前向完整性(Forward integrity)Hash,三者(如图)组成了一套完整的分布式账本链条,其中每一条、每一页的交易记录之间、页与页之间都由密码学原语保护。这样的一种数据结构设计,为区块链带来了更灵活的去中心结算方案。

将区块链解构之后,我们也可以灵活地将这些密码学原语用于保障常规数据的完整性,尤其可以应对B2B场景下,企业联盟之间的数据共享信任问题,通过完整性校验,可以实现竞争关系下的同业数据融合;通过数字签名,可以为如票据交易、款项去处之类的数据审计提供证据。

大数据分析提高了对数据真实性的要求,密码学提供的完整性校验方案,可以为外来数据治理提供额外的保障。同时由于密码学原语位于设施的底层,因而这一系列的验证审计操作都可以自动化执行,而不需要额外的人力来管理校对。

数据可用性

可用性(Availablity),在数据治理中是一个非常困难的话题,我们可以将数据副本分发到业务微服务中缓存,也可以采用分布式的存储方式,这些都是为了解决单点故障、减少大量数据同步的时间开销,其中Hash Table作为最常见的检索方式,可以同时保障数据的完整性和可用性,数据池可以使用分块的方式将数据分散存储,同时使用Hash来计算出摘要以供后续的检索,通过额外的加密手段,甚至可以实现对等节点的全量和增量数据同步,而不必担心数据的私密泄露。

DynamoDB采用了这种Hash一致性算法,“均匀”地管理数据分片(如图)。Bittorrent网络采用Hashtable来寻找目标文件。Spark-mllib也使用了Hash来进行词频统计,达到数据分治的效果,避免了维护全局term-to-index map的麻烦。

此外,加密后的数据由于可读性问题,很难再做重用,而常见的保护用户敏感信息,并且同时保护数据分析可读性的方法,在微软和苹果等公司都有所尝试,称为Differential privacy(如图),数据分析师在提取数据时,Privacy Guard评估Query Privacy impact,为反馈的数据加上噪音,例如可以使用Hash替换掉真实信息,只保留数据“特征”,减少用户隐私泄露的风险,同时又能保留数据的分析价值。

重返焦点

如果说数据湖是每个企业的金库,那么数据治理的安全措施就是用于搭起金库壁垒的一砖一瓦,每个安全措施之间的紧密粘合都依托于完善和牢固的密码学设计,随着“安全无小事,商场如战场”的警钟不断敲响,从基础设施建设上对数据治理的不断规范化和标准化呼声越来越高,密码学重回技术焦点的日子应该不会太远。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容