DBnet损失函数

损失主要包括概率图损失(probability map loss)Ls,二值图损失(binary map loss)Lb和阈值图损失(threshold map loss)Lt,计算公式如下

概率图损失

概率图损失使用的是BCE损失,为平衡正负样本,采用了在线难例挖掘的策略,正负样本比例1:3
代码实现

class BalanceCrossEntropyLoss(nn.Module):
    '''
    设置正负样本比例进行在线难样本挖掘
    Balanced cross entropy loss.
    Shape:
        - Input: :math:`(N, 1, H, W)`
        - GT: :math:`(N, 1, H, W)`, same shape as the input
        - Mask: :math:`(N, H, W)`, same spatial shape as the input
        - Output: scalar.
    '''

    def __init__(self, negative_ratio=3.0, eps=1e-6):
        """
        :param negative_ratio: 负样本比例
        :param eps: epsilon的缩写,误差
        """
        super(BalanceCrossEntropyLoss, self).__init__()
        self.negative_ratio = negative_ratio
        self.eps = eps

    def forward(self,
                pred: torch.Tensor,
                gt: torch.Tensor,
                mask: torch.Tensor,
                return_origin=False):
        '''
        Args:
            pred: shape :math:`(N, 1, H, W)`, the prediction of network
            gt: shape :math:`(N, 1, H, W)`, the target
            mask: shape :math:`(N, H, W)`, the mask indicates positive regions
        '''
        positive = (gt * mask).byte()  # 等价于torch.uint8
        negative = ((1 - gt) * mask).byte()
        positive_count = int(positive.float().sum())
        negative_count = min(int(negative.float().sum()), int(positive_count * self.negative_ratio))
        loss = nn.functional.binary_cross_entropy(pred, gt, reduction='none')
        positive_loss = loss * positive.float()
        negative_loss = loss * negative.float()
        # negative_loss, _ = torch.topk(negative_loss.view(-1).contiguous(), negative_count)
        negative_loss, _ = negative_loss.view(-1).topk(negative_count)

        balance_loss = (positive_loss.sum() + negative_loss.sum()) / (positive_count + negative_count + self.eps)

        if return_origin:
            return balance_loss, loss
        return balance_loss
阈值图损失

阈值图损失使用的L1损失
代码实现

class MaskL1Loss(nn.Module):
    def __init__(self, eps=1e-6):
        super(MaskL1Loss, self).__init__()
        self.eps = eps

    def forward(self, pred: torch.Tensor, gt, mask):
        loss = (torch.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps)
        return loss
二值图损失

计算公式



代码实现

class DiceLoss(nn.Module):
    '''
    Loss function from https://arxiv.org/abs/1707.03237,
    where iou computation is introduced heatmap manner to measure the
    diversity bwtween tow heatmaps.
    '''

    def __init__(self, eps=1e-6):
        super(DiceLoss, self).__init__()
        self.eps = eps

    def forward(self, pred: torch.Tensor, gt, mask, weights=None):
        '''
        pred: one or two heatmaps of shape (N, 1, H, W),
            the losses of tow heatmaps are added together.
        gt: (N, 1, H, W)
        mask: (N, H, W)
        '''
        return self._compute(pred, gt, mask, weights)

    def _compute(self, pred, gt, mask, weights):
        if pred.dim() == 4:
            pred = pred[:, 0, :, :]
            gt = gt[:, 0, :, :]
        assert pred.shape == gt.shape
        assert pred.shape == mask.shape
        if weights is not None:
            assert weights.shape == mask.shape
            mask = weights * mask
        intersection = (pred * gt * mask).sum()

        union = (pred * mask).sum() + (gt * mask).sum() + self.eps
        loss = 1 - 2.0 * intersection / union
        assert loss <= 1
        return loss

Dice loss参考链接

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容