基于sklearn的朴素贝叶斯分类器

理论内容

贝叶斯定理

贝叶斯定理是描述条件概率关系的定律
$$P(A|B) = \cfrac{P(B|A) * P(A)}{P(B)}$$

朴素贝叶斯分类器

朴素贝叶斯分类器是一种基于概率的分类器,我们做以下定义:

  • B:具有特征向量B
  • A:属于类别A

有了这个定义,我们解释贝叶斯公式

  • P(A|B):具有特征向量B样本属于A类别的概率(计算目标)
  • P(B|A):在A类别中B向量出现的概率(训练样本中的数据)
  • P(A):A类出现的概率(训练样本中的频率)
  • P(B):B特征向量出现的概率(训练样本中的频率)

对于朴素贝叶斯分类器,进一步假设特征向量之间无关,那么朴素贝叶斯分类器公式可以如下表示$$P(A|B) = \cfrac{P(A)\prod P(B_{i} |A)}{P(B)}$$

以上公式右侧的值都可以在训练样本中算得。进行预测时,分别计算每个类别的概率,取概率最高的一个类别。

特征向量为连续值的朴素贝叶斯分类器

对于连续值,有以下两种处理方式

  • 将连续值按区间离散化
  • 假设特征向量服从正态分布或其他分布(很强的先验假设),由样本中估计出参数,计算贝叶斯公式时带入概率密度

代码实现

导入数据——文本新闻数据

# from sklearn.datasets import fetch_20newsgroups
# news = fetch_20newsgroups(subset='all')
# print(len(news.data))
# print(news.data[0])
from sklearn import datasets
train = datasets.load_files("./20newsbydate/20news-bydate-train")
test = datasets.load_files("./20newsbydate/20news-bydate-test")
print(train.DESCR)
print(len(train.data))
print(train.data[0])
None
11314
b"From: cubbie@garnet.berkeley.edu (                               )\nSubject: Re: Cubs behind Marlins? How?\nArticle-I.D.: agate.1pt592$f9a\nOrganization: University of California, Berkeley\nLines: 12\nNNTP-Posting-Host: garnet.berkeley.edu\n\n\ngajarsky@pilot.njin.net writes:\n\nmorgan and guzman will have era's 1 run higher than last year, and\n the cubs will be idiots and not pitch harkey as much as hibbard.\n castillo won't be good (i think he's a stud pitcher)\n\n       This season so far, Morgan and Guzman helped to lead the Cubs\n       at top in ERA, even better than THE rotation at Atlanta.\n       Cubs ERA at 0.056 while Braves at 0.059. We know it is early\n       in the season, we Cubs fans have learned how to enjoy the\n       short triumph while it is still there.\n"

处理数据——特征抽取(文字向量化)

from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer(stop_words="english",decode_error='ignore')
train_vec = vec.fit_transform(train.data)
test_vec = vec.transform(test.data)
print(train_vec.shape)
(11314, 129782)

模型训练

from sklearn.naive_bayes import MultinomialNB
bays = MultinomialNB()
bays.fit(train_vec,train.target)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

模型评估

使用自带评估器

bays.score(test_vec,test.target)
0.80244291024960168

调用评估器

from sklearn.metrics import classification_report
y = bays.predict(test_vec)
print(classification_report(test.target,y,target_names=test.target_names))
                          precision    recall  f1-score   support

             alt.atheism       0.80      0.81      0.80       319
           comp.graphics       0.65      0.80      0.72       389
 comp.os.ms-windows.misc       0.80      0.04      0.08       394
comp.sys.ibm.pc.hardware       0.55      0.80      0.65       392
   comp.sys.mac.hardware       0.85      0.79      0.82       385
          comp.windows.x       0.69      0.84      0.76       395
            misc.forsale       0.89      0.74      0.81       390
               rec.autos       0.89      0.92      0.91       396
         rec.motorcycles       0.95      0.94      0.95       398
      rec.sport.baseball       0.95      0.92      0.93       397
        rec.sport.hockey       0.92      0.97      0.94       399
               sci.crypt       0.80      0.96      0.87       396
         sci.electronics       0.79      0.70      0.74       393
                 sci.med       0.88      0.87      0.87       396
               sci.space       0.84      0.92      0.88       394
  soc.religion.christian       0.81      0.95      0.87       398
      talk.politics.guns       0.72      0.93      0.81       364
   talk.politics.mideast       0.93      0.94      0.94       376
      talk.politics.misc       0.68      0.62      0.65       310
      talk.religion.misc       0.88      0.44      0.59       251

             avg / total       0.81      0.80      0.78      7532
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容