02-Bioconductor包学习之GRanges文档学习

Week 1_08_GenomicRanges - GRanges

# source("http://www.bioconductor.org/biocLite.R")
# biocLite(c("GenomicRanges"))

library(GenomicRanges)
gr <- GRanges(seqnames = "chr1",
              strand = c("+", "-", "+"),
              ranges = IRanges(start = c(1, 3, 5), width = 3))
## 获得下游区域
flank(gr, 2, start = FALSE)
## 获得上游2bp区域
flank(gr, 2, start = T)

## seqinfo
seqinfo(gr)
seqlengths(gr) <- c("chr1" = 10)
seqinfo(gr)
seqlevels(gr)
# gaps 获取基因上没有倍GRanges覆盖到的区域
gaps(gr)

seqlevels(gr) <- c("chr1", "chr2")
seqnames(gr) <- c("chr1", "chr2", "chr1")
seqinfo(gr)
sort(gr)

seqlevels(gr) <- c("chr2", "chr1") # 定义染色体的水平顺序
sort(gr) # 排序后会按照指定的染色体顺序来排序

genome(gr) <- "hg19"  ## 注明基因组的版本
gr

gr2 <- gr
genome(gr2) <- "hg18"
findOverlaps(gr, gr2)  ## 由于基因组版本号不同所以结果会报错

GRanges 的参考说明书学习

# 新版本包安装方法
if (!require("BiocManager"))
  install.packages("BiocManager")
BiocManager::install("GenomicRanges")

library(GenomicRanges)
gr <- GRanges(seqnames = Rle(c("chr1", "chr2", "chr1", "ch3"), c(1, 3, 2, 4)), # 目前理解Rle这里就相当于rep函数
              ranges = IRanges(101:100, end = 111:120, names = head(letters, 10)), # 指定区域坐标,以及每个区间的名称
              strand = Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
              score = 1:10,
              GC = seq(1, 0, length = 10)
              )
seqnames(gr)
ranges(gr)
strand(gr) ## 对于重复数据比较多的情况使用Rle能后节省空间
granges(gr)
gr
mcols(gr) # 提取metadata列
mcols(gr)$score

seqlengths(gr) <- c(249250621, 243199373, 198022430) ## 指定每条染色体的长度
seqlengths(gr)
names(gr)
length(gr)

# 2.1 分割和合并GRanges
sp <- split(gr, rep(1:2, each = 5)) # 分割
sp
c(sp[[1]], sp[[2]]) # 合并

# 2.2 筛选GRanges
gr[2:3]
gr[2:3, "GC"]

singles <- split(gr, names(gr))
singles
grMod <- gr
grMod[2] <- singles[[1]]
head(grMod, n = 3)
## 重复、反转、选择
rep(singles[[2]], times = 3)
rev(gr)
head(gr, n = 2)
tail(gr, n = 2)
window(gr, start = 2, end = 4)
gr[IRanges(start = c(2, 7), end = c(3, 9))] ## 结合IRanges来筛选目标行

# 2.3 Basic interval operations for GRanges objects
g <- gr[1:3]
g <- append(g, singles[[10]])  ## append函数表示在末尾添加信息
start(g)
end(g)
width(g)
range(g)
flank(g, 10) # 获取下游downstream区域10
flank(g, 10, start = F) ## 获取上游Updtream区域10
shift(g, 10) ## 表示整体向前移动十个单位
resize(g ,10) ## 将区间重新定义,保持起始位置不变,将其变为宽度为10的区间(考虑了正负方向)
reduce(g) ## 将交集区域合并为一个区域
gaps(g) ## 取基因组上没有被覆盖的区域
disjoin(g) ## 取已有区域没有交集的区域坐标
coverage(g) ## 将所有区域按照交集程度划分为不同等级

# 2.4 Interval set operations for GRanges objects
g2 <- head(gr, n = 2)
union(g, g2) ## 取两个GRanges的并集
intersect(g, g2) # 取交集区域
setdiff(g, g2) # 取没有交集的区域

g3 <- g[1:2]
ranges(g3[1]) <- IRanges(start = 105, end = 112) ## 修改区域
punion(g2, g3) ## 当有相同的metdata时候,可以使用p开头的来进行操作 
pintersect(g2, g3)
psetdiff(g2, g3)
methods(class = "GRanges") # 查看GRanges里面所有函数

# 3GRangesList: Groups of Genomic Ranges
gr1 <- GRanges(
  seqnames = "chr2",
  ranges = IRanges(103, 106),
  strand = "+",
  score = 5L, GC = 0.45)
gr2 <- GRanges(
  seqnames = c("chr1", "chr1"),
  ranges = IRanges(c(107, 113), width = 3),
  strand = c("+", "-"),
  score = 3:4, GC = c(0.3, 0.5))
grl <- GRangesList("txA" = gr1, "txB" = gr2)
# 3.1 Basic GRangesList accessors
seqnames(grl)
ranges(grl)
strand(grl)
length(grl)
names(grl)
seqnames(grl)

elementNROWS(grl) # 统计每一个小GRanges的行数
isEmpty(grl)
mcols(grl) <- c("Transcript A", "Transcript B")
mcols(unlist(grl))

# 3.2 Combining GRangesList objects
ul <- unlist(grl)
ul

grl1 <- GRangesList(
  gr1 = GRanges("chr2", IRanges(3, 6)),
  gr2 = GRanges("chr1", IRanges(c(7,13), width = 3)))
grl2 <- GRangesList(
  gr1 = GRanges("chr2", IRanges(9, 12)),
  gr2 = GRanges("chr1", IRanges(c(25,38), width = 3)))
gr1
gr2
pc(grl1, grl2) ## 合并两个GRanges
grl3 <- c(grl1, grl2)
regroup(grl3, names(grl3)) ## 这两步等同于pc()

# 3.3 Basic interval operations for GRangesList objects
start(grl)
end(grl)
width(grl)
sum(width(grl))
shift(grl, 20)
coverage(grl)

# 3.4 Subsetting GRangesList objects
grl[1]
grl[[1]]
grl["txA"]
grl$txB

grl[1, "score"]
grl["txB", "GC"]

rep(grl[[1]], times = 3)
rev(grl)
head(grl, n = 1)
tail(grl, n = 1)
window(grl, start = 1, end = 1)
grl[IRanges(start = 2, end = 2)]

# 3.5 Looping over GRangesList objects
lapply(grl, length)
sapply(grl, length)

grl2 <- shift(grl, 10)
names(grl2) <- c("shiftTxA", "shiftTxB")
mapply(c, grl, grl2)
Map(c, grl, grl2)

endoapply(grl, rev) 
mendoapply(c, grl, grl2)
Reduce(c, grl)

gr <- unlist(grl)
gr$log_score <- log(gr$score)
grl <- relist(gr, grl)

# 更多资料
?GRangesList
methods(class="GRangesList")   # _partial_ list

# 4 Interval overlaps involving GRanges and GRangesList objects
findOverlaps(gr, grl)
countOverlaps(gr, grl)
subsetByOverlaps(gr,grl)
findOverlaps(gr, grl, select="first")
findOverlaps(grl, gr, select="first")

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容