733. 图像渲染(Python)

题目

难度:★★☆☆☆
类型:几何,深度优先搜索

有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间。

给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newColor,让你重新上色这幅图像。

为了完成上色工作,从初始坐标开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为新的颜色值。

最后返回经过上色渲染后的图像。

注意
image 和 image[0] 的长度在范围 [1, 50] 内。
给出的初始点将满足 0 <= sr < image.length 和 0 <= sc < image[0].length。
image[i][j] 和 newColor 表示的颜色值在范围 [0, 65535]内。

示例

输入:
image = [[1,1,1],[1,1,0],[1,0,1]]
sr = 1, sc = 1, newColor = 2
输出: [[2,2,2],[2,2,0],[2,0,1]]
解析:
在图像的正中间,(坐标(sr,sc)=(1,1)),
在路径上所有符合条件的像素点的颜色都被更改成2。
注意,右下角的像素没有更改为2,
因为它不是在上下左右四个方向上与初始点相连的像素点。

解答

这道题我们可以用深度优先搜索来实现,首先我们来看一下什么是深度优先搜索。深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。(来自百度百科

我们需要另外构建深度优先搜索函数,该函数用于实现对联通域(具有相同颜色的联通区域)内所有像素进行上色。

函数输入输出

该函数的输入与主函数一致,包含一张图像(会原地修改),上色初始点的坐标(sr, sc);函数没有输出,但是会对输入的图像进行操作。

函数实现

该函数的实现依赖于几个重要的变量,我们使用实例变量,这样可以在全局使用,因为所有层次的递归都会用到:

  1. 集合。我们准备一个集合,这是一个全局变量,用来存放已经修改的像素点,从而保证每个结点只遍历一次,避免重复遍历超过最大递归深度;

  2. 颜色。包括修改前的颜色(prev_color)和修改后的颜色(new_color)。

具体操作:

  1. 每次调用函数,首先查看输入点是否在集合内,如果在,则不进行任何操作,否则,将该点处的像素值记录下来;

  2. 将该点处的颜色修改为新颜色。其实该点处的颜色在修改前一定是prev_color,因为我们有如下的递归条件;

  3. 向上下左右四个方向探索,这里需要注意增加下标合法性的判断,如果某一个方向上相邻像素点的颜色是prev_color,说明该像素点在联通域内,那么调用本函数,对该像素点进行上色。

class Solution:
    def floodFill(self, image, sr, sc, newColor):
        self.unicom = set()                 # 存放联通域内遍历过的所有像素
        self.prev_color = image[sr][sc]     # 联通域内要修改的像素的颜色
        self.new_color = newColor           # 新颜色

        def dfs(image, sr, sc):
            if (sr, sc) in self.unicom:
                return

            image[sr][sc] = self.new_color  # 上色
            self.unicom.add((sr, sc))       # 集合中添加记录

            if sr >= 1 and image[sr-1][sc] == self.prev_color:
                dfs(image, sr-1, sc)

            if sr < len(image) - 1 and image[sr+1][sc] == self.prev_color:
                dfs(image, sr+1, sc)

            if sc >= 1 and image[sr][sc-1] == self.prev_color:
                dfs(image, sr, sc-1)

            if sc < len(image[0]) - 1 and image[sr][sc+1] == self.prev_color:
                dfs(image, sr, sc+1)

        dfs(image, sr, sc)
        return image

如有疑问或建议,欢迎评论区留言~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容