使用Python进行数据标准化

读取数据

首先,加载pandas和numpy库,读取数据。

import pandas as pd
import numpy as np
detail = pd.read_csv('detail.csv',index_col=0,encoding = 'gbk')#中文编码

自定义离差标准化函数

def minmaxscale(data):
    data=(data-data.min())/(data.max()-data.min())
    return data
##对菜品订单表售价和销量做离差标准化
data1=minmaxscale(detail['counts'])
data2=minmaxscale(detail ['amounts'])
data3=pd.concat([data1,data2],axis=1)
print('离差标准化之前销量和售价数据为:\n',
    detail[['counts','amounts']].head())
print('离差标准化之后销量和售价数据为:\n',data3.head())

结果为:

离差标准化之前销量和售价数据为:
            counts  amounts
detail_id                 
2956            1       49
2958            1       48
2961            1       30
2966            1       25
2968            1       13
离差标准化之后销量和售价数据为:
            counts   amounts
detail_id                  
2956          0.0  0.271186
2958          0.0  0.265537
2961          0.0  0.163842
2966          0.0  0.135593
2968          0.0  0.067797

也可以通过sklearn库中的minmax_scale函数实现

from sklearn import preprocessing
preprocessing.minmax_scale(detail['amounts'])

结果为:

Out[141]: 
array([0.271186440.265536720.16384181, ..., 0.214689270.03389831,
       0.14689266])

自定义标准差标准化函数

def StandardScaler(data):
    data=(data-data.mean())/data.std()
    return data
##对菜品订单表售价和销量做标准化
data4=StandardScaler(detail['counts'])
data5=StandardScaler(detail['amounts'])
data6=pd.concat([data4,data5],axis=1)
print('标准差标准化之前销量和售价数据为:\n',
    detail[['counts','amounts']].head())
print('标准差标准化之后销量和售价数据为:\n',data6.head())

结果为:

标准差标准化之前销量和售价数据为:
            counts  amounts
detail_id                 
2956            1       49
2958            1       48
2961            1       30
2966            1       25
2968            1       13
标准差标准化之后销量和售价数据为:
              counts   amounts
detail_id                    
2956      -0.177571  0.116671
2958      -0.177571  0.088751
2961      -0.177571 -0.413826
2966      -0.177571 -0.553431
2968      -0.177571 -0.888482

也可以通过sklearn库中的scale函数实现

from sklearn import preprocessing
preprocessing.scale(detail['amounts'])

结果为:

Out[143]: 
array([ 0.11667727,  0.08875496, -0.41384669, ..., -0.16254587,
       -1.05605991, -0.49761363])


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容