SQLAlchemy 几种查询方式总结

几种常见sqlalchemy查询:

简单查询

print(session.query(User).all())
print(session.query(User.name, User.fullname).all())
print(session.query(User, User.name).all())

带条件查询

print(session.query(User).filter_by(name='user1').all())
print(session.query(User).filter(User.name == "user").all())
print(session.query(User).filter(User.name.like("user%")).all())

多条件查询

print(session.query(User).filter(and_(User.name.like("user%"), User.fullname.like("first%"))).all())
print(session.query(User).filter(or_(User.name.like("user%"), User.password != None)).all())
print(session.query.filter(and_(User.username == username, User.id != id)).count())

sql过滤

print(session.query(User).filter("id>:id").params(id=1).all())

关联查询

print(session.query(User, Address).filter(User.id == Address.user_id).all())
print(session.query(User).join(User.addresses).all())
print(session.query(User).outerjoin(User.addresses).all())

聚合查询

print(session.query(User.name, func.count('*').label("user_count")).group_by(User.name).all())
print(session.query(User.name, func.sum(User.id).label("user_id_sum")).group_by(User.name).all())

子查询

stmt = session.query(Address.user_id, func.count('*').label("address_count")).group_by(Address.user_id).subquery()
print(session.query(User, stmt.c.address_count).outerjoin((stmt, User.id == stmt.c.user_id)).order_by(User.id).all())

exists

print(session.query(User).filter(exists().where(Address.user_id == User.id)))
print(session.query(User).filter(User.addresses.any()))

限制返回字段查询

person = session.query(Person.name, Person.created_at,Person.updated_at).filter_by(name="zhongwei").order_by(Person.created_at).first()

记录总数查询:

from sqlalchemy import func

session.query(func.count(User.id))

session.query(func.count(User.id)).
group_by(User.name)

from sqlalchemy import distinct
session.query(func.count(distinct(User.name)))

调用models类完成对数据库的增,删,改,查

from models  import User
from sqlalchemy import or_, and_
#添加数据
user=User(1,'xiaoxiao','ss123')
user.save()
#按条件查询
result=User.query.filter(User.id>5).all()
result=User.query.filter(User.username=='xiaoxiao').all() #返回结果为一个列表,列表内元素为User对象,all()为返回查询的所有结果,first()返回查询结果中的第一个
result=User.query.filter(User.username.startswith('x'))  #starstwith以什么开头
#获取查询结果的总数量
count=User.query.filter(User.id>5).count()
#获取查询结果中指定的数据
result=User.query.filter(User.id>5).all()[1:3]  #查询结果以列表返回,所以可以根据列表的切片操作来获取对应数据

#多条件查询
#sqlalchemy内置了多条件查询方法 : and_(), or()_ ,not_()
result=User.query.filter(and_(User.id>5,User.username.startswith('x'))) #查询id大于5并且用户名以x开头的
result=User.query.filter(or_(User.id>5,User.username.startswith('x'))) #查询id大于5或者用户名以x开头的
result=User.query.filter(and_(User.username.startswith('x'))) #查询用户名不是以x开头的


#修改
result=User.query.filter(User.username=='xiaoxiao').first()
result.password='000000'
db.session.commit()

#删除
result=User.query.filter(User.username=='xiaoxiao').first()
db.session.delete(result)
db.session.commit()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352