OpenCV实现图像的几何变换

图像的几何变换

几何变换主要包括缩放、平移、旋转、仿射变换、透视变换和图像裁剪等。执行这些几何变换的两个关键函数是cv2.warpAffine()和cv2.warpPerspective()。

cv2.warpAffine()函数使用以下2 x 3变换矩阵来变换源图像:

cv2.warpPerspective()函数使用以下3 x 3变换矩阵变换源图像:

接下来,我们将了解最常见的几何变换技术。

1.缩放图像

缩放图像时,可以直接使用缩放后图像尺寸调用cv2.resize():

# 指定缩放后图像尺寸

resized_image = cv2.resize(image, (width *2, height *2), interpolation=cv2.INTER_LINEAR)

除了上述用法外,也可以同时提供缩放因子fx和fy值。例如,如果要将图像缩小 2 倍:

# 使用缩放因子

dst_image = cv2.resize(image,None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)

如果要放大图像,最好的方法是使用cv2.INTER_CUBIC插值方法(较耗时)或cv2.INTER_LINEAR。如果要缩小图像,一般的方法是使用cv2.INTER_LINEAR。OpenCV提供的五种插值方法如下表所示:

显示缩放后的图像:

可以通过坐标系观察图片的缩放情况:

2.平移图像

为了平移对象,需要使用NumPy数组创建2 x 3变换矩阵,其中提供了x和y方向的平移距离(以像素为单位):

M = np.float32([[1,0, x], [0,1, y]])

其对应于以下变换矩阵:

创建此矩阵后,调用cv2.warpAffine()函数:

dst_image = cv2.warpAffine(image, M, (width, height))

cv2.warpAffine()函数使用提供的 M 矩阵转换源图像。第三个参数 (width, height) 用于确定输出图像的大小。

例如,如果图片要在 x 方向平移 200 个像素,在 y 方向移动 30 像素:

平移也可以为负值,此时为反方向移动:

M = np.float32([[1,0, -200], [0,1, -30]])

dst_image_2 = cv2.warpAffine(image, M, (width, height))

显示图片如下:

3.旋转图像

为了旋转图像,需要首先使用cv.getRotationMatrix2D()函数来构建2 x 3变换矩阵。该矩阵以所需的角度(以度为单位)旋转图像,其中正值表示逆时针旋转。旋转中心 (center) 和比例因子 (scale) 也可以调整,使用这些元素,以下方式计算变换矩阵:


其中:

以下示例构建 M 变换矩阵以相对于图像中心旋转 180 度,缩放因子为 1(不缩放)。之后,将这个 M 矩阵应用于图像,如下所示:

height, width = image.shape[:2]

M = cv2.getRotationMatrix2D((width /2.0, height /2.0),180,1)

dst_image = cv2.warpAffine(image, M, (width, height))

接下来使用不同的旋转中心进行旋转:

M = cv2.getRotationMatrix2D((width/1.5, height/1.5),30,1)

dst_image_2 = cv2.warpAffine(image, M, (width, height))

显示旋转后的图像:

4 图像的仿射变换

在仿射变换中,首先需要使用cv2.getAffineTransform()函数来构建2 x 3变换矩阵,该矩阵将从输入图像和变换图像中的相应坐标中获得。最后,将 M 矩阵传递给cv2.warpAffine():

仿射变换是保留点、直线和平面的变换。此外,平行线在此变换后将保持平行。但是,仿射变换不会同时保留像素点之间的距离和角度。

可以通过以下图像观察仿射变换的结果:

5 图像的透视变换

为了进行透视变换,首先需要使用cv2.getPerspectiveTransform()函数创建3 x 3变换矩阵。该函数需要四对点(源图像和输出图像中四边形的坐标),函数会根据这些点计算透视变换矩阵。然后,将 M 矩阵传递给cv2.warpPerspective():

透视变换效果如下所示:

6 裁剪图像

可以使用NumPy切片裁剪图像:

dst_image = image[80:200,230:330]

裁剪结果如下所示:

作者:盼小辉丶

链接:https://juejin.cn/post/7035931986191450119

来源:稀土掘金

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容