常见分布式集群选举机制总结

1,Zookeeper -- paxos

2,kafka -- zookeeper上创建节点

3,redis -- 哨兵模式

4,Eureka -- 相互复制

我们探讨这几个集群的选举机制,其实就是探讨它们的高可用性。如果集群中的某些节点挂了,如何保证可用性?这个问题是分布式系统面临的三大问题之一。

Zookeeper的leader选举机制,是这四种集群中最复杂的选举机制,同时也是这四种集群中最接近paxos算法的实现。相比于Zookeeper的选举机制,kafka集群、redis集群、Eureka集群的选举机制简单了许多。

一,Zookeeper集群的leader选举

Zookeeper的leader选举是Zookeeper实现数据一致性的关键,同时也存在一些问题。认清Zookeeper的优点与缺陷,对于我们使用好它还是很有必要的。

Zookeeper的选举机制有2个触发条件:集群启动阶段和集群运行阶段leader挂机。这2种场景下选举的流程基本一致,我们以集群运行阶段leader挂机为例来进行说明。leader挂机以后,重新选举leader,选举的流程如下:

1,Zookeeper集群中的follower检测到leader挂机,然后把自己的状态置为LOOKING,开始进行leader选举。

2,每台服务器选举自己为leader,然后把自己的选票通过广播通知其他服务器。

3,每台服务器接收来自其他服务器的选票,并进行合法性校验,主要有两点校验,选举轮次校验和服务器的状态的校验。

4,处理选票。每台服务器都会将自己的选票与其他服务器的选票进行PK,PK的规则如下:

第一个规则:首先进行ZXID的PK,大者获胜。

第二条规则:如果ZXID相等,则进行myid的PK,大者获胜。

经过PK以后,如果当前服务器PK失败,则会把自己的选票重新投给胜者,然后把更新后的选票通过广播通知其他服务器。

5,统计选票。根据超过半数的原则,每台服务器都会统计leader的选票,如果超过半数,则结束选举。

6,更新服务器状态。follower把自己的状态更新为FOLLOWING,leader把自己的状态更新为LEADING。

OK,这就是Zookeeper的leader选举机制。经过若干轮选举以后,Zookeeper集群继续对外提供服务。由于选票PK首先比较的是ZXID,所以Zookeeper能够保证leader的数据是最新的。

二,kafka集群的controller选举

kafka集群是如何保证高可用性的呢?

kafka通过Zookeeper管理集群配置、选举leader、consumer group发生变化时进行rebalance。

那么我要问了,kafka是如何选举leader的呢?

概括来说,Kafka选举leader的过程是这样的:kafka的所有broker,在Zookeeper的/controller路径下创建临时节点,成功创建的那个broker就会成为leader,其他的broker就会成为follower。

当leader挂机时,临时节点会被删除,这是其他节点通过Zookeeper的watch机制,会监听到leader的变化,然后所有的follower会再次进行leader选举。

kafka的选举其实就是创建临时节点,这和Zookeeper分布式锁的实现原理基本相同。

三,redis集群的主从切换

redis主从切换和redis集群的理解。

要注意,主从切换默认只有一个master,但是对于多个master的集群,没有主从切换的说法。

redis没有类似Zookeeper的选举机制。redis的master挂掉以后,redis集群是通过主从切换来保证高可用性的。

redis主从切换有2种方式:手动切换和自动切换。

这里我们讨论自动切换,redis主从自动切换需要哨兵模式的支持,哨兵模式简单来说就是:监控master和slave,在master出现故障的时候,自动将slave切换成master,master恢复以后,作为新master的slave对外提供服务。

四,Eureka集群的相互复制

准确的来说,Eureka集群中的各节点之间不存在主从关系。Eureka集群中的节点的关系是对等的,其他3种集群则都存在主从关系,这是Eureka集群的一个特色。

Eureka集群的各个server之间通过相互注册的方式来实现集群的高可用性。数据同步的方式是增量备份,这样可以保证每个server都是最新最全的数据。从而保证集群的高可用性。这样即使某个server挂了,集群还可以对外提供服务。

Eureka有一个配置项:eureka.client.fetch-register,是否从Eureka server获取注册信息。如果我们是Eureka集群,那么该项配置为true。这样Eureka server直接就可以相互注册。

OK,这篇文章只是对4种集群的选举机制进行了一个概括性的介绍,具体细节还是很复杂的。之前有文章重点分析过Zookeeper的leader选举,后续还会另起文章分析其他几种集群的选举机制,到时候我们再进行更深入的讲解。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355