并行化:你的高并发大杀器

本文截取程序员DD 微信中文章,只是把精华部分摘录,再次感谢前辈们的付出~~~~~

直接上业务场景:

我们可以想想有这么一个需求,在你下外卖订单的时候,这笔订单可能还需要查,用户信息,折扣信息,商家信息,菜品信息等,用同步的方式调用,如下图所示:

img

设想一下这5个查询服务,平均每次消耗50ms,那么本次调用至少是250ms,我们细想一下,在这个这五个服务其实并没有任何的依赖,谁先获取谁后获取都可以,那么我们可以想想,是否可以用多重影分身之术,同时获取这五个服务的信息呢?

优化如下:

img

将这五个查询服务并行查询,在理想情况下可以优化至50ms。当然说起来简单,我们真正如何落地呢?

  • 3.1 CountDownLatch/Phaser

CountDownLatch和Phaser是JDK提供的同步工具类Phaser是1.7版本之后提供的工具类而CountDownLatch是1.5版本之后提供的工具类。这里简单介绍一下CountDownLatch,可以将其看成是一个计数器,await()方法可以阻塞至超时或者计数器减至0,其他线程当完成自己目标的时候可以减少1,利用这个机制我们可以将其用来做并发。

可以用如下的代码实现我们上面的下订单的需求:

public class CountDownTask {
    private static final int CORE_POOL_SIZE = 4;
    private static final int MAX_POOL_SIZE = 12;
    private static final long KEEP_ALIVE_TIME = 5L;
    private final static int QUEUE_SIZE = 1600;

    protected final static ExecutorService THREAD_POOL = new ThreadPoolExecutor(CORE_POOL_SIZE, MAX_POOL_SIZE,
            KEEP_ALIVE_TIME, TimeUnit.SECONDS, new LinkedBlockingQueue<>(QUEUE_SIZE));
    public static void main(String[] args) throws InterruptedException {
        // 新建一个为5的计数器
        CountDownLatch countDownLatch = new CountDownLatch(5);
        OrderInfo orderInfo = new OrderInfo();
        THREAD_POOL.execute(() -> {
            System.out.println("当前任务Customer,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setCustomerInfo(new CustomerInfo());
            countDownLatch.countDown();
        });
        THREAD_POOL.execute(() -> {
            System.out.println("当前任务Discount,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setDiscountInfo(new DiscountInfo());
            countDownLatch.countDown();
        });
        THREAD_POOL.execute(() -> {
            System.out.println("当前任务Food,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setFoodListInfo(new FoodListInfo());
            countDownLatch.countDown();
        });
        THREAD_POOL.execute(() -> {
            System.out.println("当前任务Tenant,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setTenantInfo(new TenantInfo());
            countDownLatch.countDown();
        });
        THREAD_POOL.execute(() -> {
            System.out.println("当前任务OtherInfo,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setOtherInfo(new OtherInfo());
            countDownLatch.countDown();
        });
        countDownLatch.await(1, TimeUnit.SECONDS);
        System.out.println("主线程:"+ Thread.currentThread().getName());
    }
}

建立一个线程池(具体配置根据具体业务,具体机器配置),进行并发的执行我们的任务(生成用户信息,菜品信息等),最后利用await方法阻塞等待结果成功返回。

  • 3.2CompletableFuture

相信各位同学已经发现,CountDownLatch虽然能实现我们需要满足的功能但是其任然有个问题是,在我们的业务代码需要耦合CountDownLatch的代码,比如在我们获取用户信息之后我们会执行countDownLatch.countDown(),很明显我们的业务代码显然不应该关心这一部分逻辑,并且在开发的过程中万一写漏了,那我们的await方法将只会被各种异常唤醒。

所以在JDK1.8中提供了一个类CompletableFuture,它是一个多功能的非阻塞的Future。(什么是Future:用来代表异步结果,并且提供了检查计算完成,等待完成,检索结果完成等方法。)在我之前的这篇文章中详细介绍了《异步技巧之CompletableFuture》,有兴趣的可以看这篇文章。

我们将每个任务的计算完成的结果都用CompletableFuture来表示,利用CompletableFuture.allOf汇聚成一个大的CompletableFuture,那么利用get()方法就可以阻塞。

public class CompletableFutureParallel {
    private static final int CORE_POOL_SIZE = 4;
    private static final int MAX_POOL_SIZE = 12;
    private static final long KEEP_ALIVE_TIME = 5L;
    private final static int QUEUE_SIZE = 1600;

    protected final static ExecutorService THREAD_POOL = new ThreadPoolExecutor(CORE_POOL_SIZE, MAX_POOL_SIZE,
            KEEP_ALIVE_TIME, TimeUnit.SECONDS, new LinkedBlockingQueue<>(QUEUE_SIZE));
    public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {
        OrderInfo orderInfo = new OrderInfo();
        //CompletableFuture 的List
        List<CompletableFuture> futures = new ArrayList<>();
        futures.add(CompletableFuture.runAsync(() -> {
            System.out.println("当前任务Customer,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setCustomerInfo(new CustomerInfo());
        }, THREAD_POOL));
        futures.add(CompletableFuture.runAsync(() -> {
            System.out.println("当前任务Discount,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setDiscountInfo(new DiscountInfo());
        }, THREAD_POOL));
        futures.add( CompletableFuture.runAsync(() -> {
            System.out.println("当前任务Food,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setFoodListInfo(new FoodListInfo());
        }, THREAD_POOL));
        futures.add(CompletableFuture.runAsync(() -> {
            System.out.println("当前任务Other,线程名字为:" + Thread.currentThread().getName());
            orderInfo.setOtherInfo(new OtherInfo());
        }, THREAD_POOL));
        CompletableFuture allDoneFuture = CompletableFuture.allOf(futures.toArray(new CompletableFuture[futures.size()]));
        allDoneFuture.get(10, TimeUnit.SECONDS);
        System.out.println(orderInfo);
    }
}

可以看见我们使用CompletableFuture能很快的完成的需求,当然这还不够。

  • 3.3 Fork/Join

我们上面用CompletableFuture完成了我们对多组任务并行执行,但是其依然是依赖我们的线程池,在我们的线程池中使用的是阻塞队列,也就是当我们某个线程执行完任务的时候需要通过这个阻塞队列进行,那么肯定会发生竞争,所以在JDK1.7中提供了ForkJoinTask和ForkJoinPool。

img

ForkJoinPool中每个线程都有自己的工作队列,并且采用Work-Steal算法防止线程饥饿。 Worker线程用LIFO的方法取出任务,但是会用FIFO的方法去偷取别人队列的任务,这样就减少了锁的冲突。

img

网上这个框架的例子很多,我们看看如何使用代码其完成我们上面的下订单需求:

public class OrderTask extends RecursiveTask<OrderInfo> {
    @Override
    protected OrderInfo compute() {
        System.out.println("执行"+ this.getClass().getSimpleName() + "线程名字为:" + Thread.currentThread().getName());
        // 定义其他五种并行TasK
        CustomerTask customerTask = new CustomerTask();
        TenantTask tenantTask = new TenantTask();
        DiscountTask discountTask = new DiscountTask();
        FoodTask foodTask = new FoodTask();
        OtherTask otherTask = new OtherTask();
        invokeAll(customerTask, tenantTask, discountTask, foodTask, otherTask);
        OrderInfo orderInfo = new OrderInfo(customerTask.join(), tenantTask.join(), discountTask.join(), foodTask.join(), otherTask.join());
        return orderInfo;
    }
    public static void main(String[] args) {
        ForkJoinPool forkJoinPool = new ForkJoinPool(Runtime.getRuntime().availableProcessors() -1 );
        System.out.println(forkJoinPool.invoke(new OrderTask()));
    }
}
class CustomerTask extends RecursiveTask<CustomerInfo>{

    @Override
    protected CustomerInfo compute() {
        System.out.println("执行"+ this.getClass().getSimpleName() + "线程名字为:" + Thread.currentThread().getName());
        return new CustomerInfo();
    }
}
class TenantTask extends RecursiveTask<TenantInfo>{

    @Override
    protected TenantInfo compute() {
        System.out.println("执行"+ this.getClass().getSimpleName() + "线程名字为:" + Thread.currentThread().getName());
        return new TenantInfo();
    }
}
class DiscountTask extends RecursiveTask<DiscountInfo>{

    @Override
    protected DiscountInfo compute() {
        System.out.println("执行"+ this.getClass().getSimpleName() + "线程名字为:" + Thread.currentThread().getName());
        return new DiscountInfo();
    }
}
class FoodTask extends RecursiveTask<FoodListInfo>{

    @Override
    protected FoodListInfo compute() {
        System.out.println("执行"+ this.getClass().getSimpleName() + "线程名字为:" + Thread.currentThread().getName());
        return new FoodListInfo();
    }
}
class OtherTask extends RecursiveTask<OtherInfo>{

    @Override
    protected OtherInfo compute() {
        System.out.println("执行"+ this.getClass().getSimpleName() + "线程名字为:" + Thread.currentThread().getName());
        return new OtherInfo();
    }
}

我们定义一个OrderTask并且定义五个获取信息的任务,在compute中分别fork执行这五个任务,最后在将这五个任务的结果通过Join获得,最后完成我们的并行化的需求。

  • 3.4 parallelStream

在jdk1.8中提供了并行流的API,当我们使用集合的时候能很好的进行并行处理,下面举了一个简单的例子从1加到100:

public class ParallelStream {
    public static void main(String[] args) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        for (int i = 1; i <= 100; i++) {
            list.add(i);
        }
        LongAdder sum = new LongAdder();
        list.parallelStream().forEach(integer -> {
//            System.out.println("当前线程" + Thread.currentThread().getName());
            sum.add(integer);
        });
        System.out.println(sum);
    }
}

parallelStream中底层使用的那一套也是Fork/Join的那一套,默认的并发程度是可用CPU数-1。

  • 3.5 分片

可以想象有这么一个需求,每天定时对id在某个范围之间的用户发券,比如这个范围之间的用户有几百万,如果给一台机器发的话,可能全部发完需要很久的时间,所以分布式调度框架比如:elastic-job都提供了分片的功能,比如你用50台机器,那么id%50=0的在第0台机器上,=1的在第1台机器上发券,那么我们的执行时间其实就分摊到了不同的机器上了。

4.并行化注意事项

  • 线程安全:在parallelStream中我们列举的代码中使用的是LongAdder,并没有直接使用我们的Integer和Long,这个是因为在多线程环境下Integer和Long线程不安全。所以线程安全我们需要特别注意。
  • 合理参数配置:可以看见我们需要配置的参数比较多,比如我们的线程池的大小,等待队列大小,并行度大小以及我们的等待超时时间等等,我们都需要根据自己的业务不断的调优防止出现队列不够用或者超时时间不合理等等。

5.最后

本文介绍了什么是并行化,并行化的各种历史,在Java中如何实现并行化,以及并行化的注意事项。希望大家对并行化有个比较全面的认识。最后给大家提个两个小问题:

  1. 在我们并行化当中有某个任务如果某个任务出现了异常应该怎么办?
  2. 在我们并行化当中有某个任务的信息并不是强依赖,也就是如果出现了问题这部分信息我们也可以不需要,当并行化的时候,这种任务出现了异常应该怎么办?

大家可以留言 一起讨!!!!!!!!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355

推荐阅读更多精彩内容