免疫组库数据分析||immunarch教程:Diversity 分析

immunarch — Fast and Seamless Exploration of Single-cell and Bulk T-cell/Antibody Immune Repertoires in R

10× Genomics单细胞免疫组库VDJ分析必知必会
免疫组库数据分析||immunarch教程:克隆型分析
免疫组库数据分析||immunarch教程:探索性数据分析
免疫组库数据分析||immunarch教程:载入10X数据
免疫组库数据分析||immunarch教程:快速开始
免疫组库数据分析||immunarch教程:GeneUsage分析

今天,我们继续我们的免疫组库数据分析的Demos,这一次我们来谈谈Diversity 分析。像我这样刚入门免疫组库的人首先会问什么是Diversity ?如果不是生态学出身,可能更多地听到的是异质性,多样性是异质性的一种体现。坦率地说,我接触多样性是从《数量生态学》开始的,这是一门研究某生境下物种分布/多寡/迁移的学科。其实我们的数据可以做一个类比:群落-组织;物种-VDJ克隆型。其实《数量生态学》研究的也是一张丰度表。所以我们可以用数量生态学大名鼎鼎的R包(vegan)来计算VDJ
的多样性,只是我们今天介绍的immunarch 用的是自己写的代码(我是怎么知道的?看了源码呀),而另一个VDJ分析工具(scRepertoire)就直接用了vegen 。

所以,什么是Diversity ?

在生物学种,物种(替换为克隆型)丰富度(Species Richness,s)是一个相对的术语,指的是群落(组织)中物种的数量,它直接关系到某一地区物种多样性的测量。一个相关的术语,均匀性(evenness ,E),是多样性的另一个方面,它定义了同一地区每个物种的个体数量。这些术语一起被用来描述地球上的物种多样性(diversity )模式。

Species Diversity - QS Study

在下面的分析中,我们可以看到许多生态学中的概念和指标。在新版的《数量生态学:R语言应用》中新增第八章专门讲了群落多样性,可以参考。很多分析不过是换个矩阵,当年为什么要学生态学,原来在这等着我呢。

在immunarch中有更丰富的多样性指标和方便的统计方法。在repDiversity函数中实现了对曲目多样性估计的几种方法。与上述函数相似的。method参数设置了多样性估计的方法。你可以选择以下方法之一:

  • Chao1 estimator is a nonparameteric asymptotic estimator of species richness (number of species in a population).
  • Hill numbers are a mathematically unified family of diversity indices (differing only by an exponent q).
  • div- True diversity, or the effective number of types, refers to the number of equally-abundant types needed for the average proportional abundance of the types to equal that observed in the dataset of interest where all types may not be equally abundant.
  • gini.simp - The Gini-Simpson index is the probability of interspecific encounter, i.e., probability that two entities represent different types.
  • inv.simp - Inverse Simpson index is the effective number of types that is obtained when the weighted arithmetic mean is used to quantify average proportional abundance of types in the dataset of interest.
  • gini - The Gini coefficient measures the inequality among values of a frequency distribution (for example levels of income). A Gini coefficient of zero expresses perfect equality, where all values are the same (for example, where everyone has the same income). A Gini coefficient of one (or 100 percents ) expresses maximal inequality among values (for example where only one person has all the income).
  • raref - Rarefaction is a technique to assess species richness from the results of sampling through extrapolation.

我们同样载入R包和数据:

library(immunarch); data(immdata)       # Load the package and the test dataset
?repDiversity

div_div <- repDiversity(immdata$data, "inv.simp")
div_div

    Sample     Value
1  A2-i129  795.1269
2  A2-i131 1271.0224
3  A2-i133  425.6711
4  A2-i132 3435.5682
5  A4-i191  191.2722
6  A4-i192  525.2406
7      MS1  140.5916
8      MS2 1816.6960
9      MS3  141.6550
10     MS4 4504.9258
11     MS5  135.1877
12     MS6 3809.8502

下面我们用vegna计算一下来做个比较:

library(vegan)
ve_inv <- diversity(immdata$data$`A2-i129`$Clones,"inv")
ve_inv
797.5846

names(immdata$data)
 [1] "A2-i129" "A2-i131" "A2-i133" "A2-i132" "A4-i191" "A4-i192" "MS1"     "MS2"     "MS3"     "MS4"     "MS5"     "MS6"    
 ve_inv = unlist(lapply(1:length(names(immdata$data)), FUN = function(x ){diversity(immdata$data[[x]]$Clones,"inv")}))

 cor(div_div$Value,ve_inv)
[1] 0.9986046

两种方法计算的inv.simp相关系数为0.9986046.

继续发挥immunarch 短平快的优势,快速统计和作图。

# Compute statistics and visualise them
# Chao1 diversity measure
div_chao <- repDiversity(immdata$data, "chao1")

# Hill numbers
div_hill <- repDiversity(immdata$data, "hill")

# D50
div_d50 <- repDiversity(immdata$data, "d50")

# Ecological diversity measure
div_div <- repDiversity(immdata$data, "div")


p1 <- vis(div_chao)
p2 <- vis(div_chao, .by = c("Status", "Sex"), .meta = immdata$meta)
p3 <- vis(div_hill, .by = c("Status", "Sex"), .meta = immdata$meta)

p4 <- vis(div_d50)
p5 <- vis(div_d50, .by = "Status", .meta = immdata$meta)
p6 <- vis(div_div)

p1 + p2
p3 + p6
p4 + p5

做过扩增子和生态的朋友对稀释曲线不应感到陌生:

imm_raref <- repDiversity(immdata$data, "raref", .verbose = F)

 imm_raref[1:5,]
  Size     Q0.025       Mean     Q0.975  Sample          Type
1 0.02 0.02485373 0.02387968 0.02582681 A2-i129 interpolation
2 0.04 0.04849410 0.04689468 0.05009084 A2-i129 interpolation
3 0.06 0.07154025 0.06938140 0.07369409 A2-i129 interpolation
4 0.08 0.09416917 0.09148383 0.09684658 A2-i129 interpolation
5 0.10 0.11647440 0.11328184 0.11965546 A2-i129 interpolation


p1 <- vis(imm_raref)
p2 <- vis(imm_raref, .by = "Status", .meta = immdata$meta)
p1 + p2
repDiversity(immdata$data, "raref", .verbose = F) %>% vis(.log = TRUE)

VDJ 多样性是免疫组库分析的核心,本节我们引进生态学多样性的指标来刻画克隆型,为我们从总体上来看VDJ的状态。我们为什么要做多样性研究?还不是为了找出异质性吗。

下面的描述来自生物学的某个wiki,对我们研究VDJ不无启发意义。

以下是三种公认的生物物种多样性假说。它们包括:(1)异质性假说,(2)竞争假说,(3)捕食假说。
衡量多样性有三个主要原因:(1)衡量稳定性,以确定一个环境是否在退化,(2)比较两个或更多的环境,和(3)消除对广泛列表的需要(形成数据概览,即用一个多样性指标,说明了需要列举很多概念才能说清楚的东西)。多样性指数提供了一个群落组成的重要信息。这些指数不仅衡量了物种的丰富度,还考虑了物种的相对丰富度或均匀度。在测量物种多样性时,物种丰富度和均匀度必须同时考虑。此外,指数还提供了物种稀有度和共性的重要信息。


https://immunarch.com/articles/web_only/v6_diversity.html
https://en.wikibooks.org/wiki/Ecology/Species_Richness_and_Diversity

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343