机器学习算法:LR多分类与softmax分类

LR实现多分类

LR是一种传统的二分类模型,也可以做多分类模型,其实现思路如下:

  • 将多分类模型拆分成多个二分类模型
  • 分别训练二分类模型
  • 将多个二分类模型进行集成,选取概率值最大的那个作为最终的分类结果
. logistic函数(sigmoid函数)

该函数常被用作神经网络的激活函数。

. LR的似然函数

需要选择合适的参数θ 使似然函数最大化

. LR 似然函数最大化,求出合适的参数θ

第一步: 对似然函数取对数

第二步: 利用梯度下降法来求参数 θ

第三步: 更新法则:

softmax 回归

. softmax函数的定义

softmax函数又称为归一化指数函数,是逻辑函数一种推广式,它能将一个含任意实数的K维向量z “压缩”到另一个K维实向量中,使得每一个元素都在(0,1)之间,所有元素的何为1。

. softmax函数表达式

softmax函数的表达式为:


其中,j = 1,2,...,K

. softmax函数的应用

Softmax函数实际上是有限项离散概率分布的梯度对数归一化。因此,Softmax函数在包括多项逻辑回归,多项线性判别分析、朴素贝叶斯分类器和人工神经网络等,多种基于概率的多分类问题方法中都有着广泛应用。

特别地,在多项逻辑回归和线性判别分析中,函数的输入是从K个不同的线性函数得到的结果,而样本向量x属于第j个分类的概率为:

. softmax的代价函数

类似于LR,其似然函数我们采用对数似然,故损失函数为:


加入L2正则项的代价函数:


. softmax的梯度求解

第一步: 对L2正则项求导

第二步: 对损失函数的梯度求解

  • 求解损失函数



    的梯度

  • 为了使得求解过程简便且易于理解,下面先只对于一个样本(x,y)求梯度:




  • 正则化之后的损失函数的梯度为:


通过梯度下降法最小化 J(θ),就能实现 softmax 回归模型。

LR 多分类与softmax的区别

  • 若待分类的类别互斥,则用Softmax方法
  • 若待分类的类别有相交,则用多分类LR,再通过投票表决
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容