每周文献-190606-多篇结构变异和转录组分析方法文章

Alignment and mapping methodology influence transcript abundance estimation

DOI(url): https://doi.org/10.1101/657874

发表日期:June 03, 2019

关键点

不对比对方法对转录本定量的影响有哪些(读完感觉是给 Salmon 最近一次升级写的软文)

参考意义

使用 RNA-seq 数据进行转录本定量的准确性取决于许多因素,比如比对的方法和所采用的定量模型。虽然有不少文章已经讲过定量模型的重要性,但比较各种比对方法对定量准确度的影响并没有那么受关注。作者在这篇文章中研究了比对方法对定量准确性以及对差异基因表达分析的影响。

即使定量模型本身不变,选择不同的比对方法,或使用不同的参数对定量的影响有时可能很大并影响下游分析。作者也强调当评估过于注重模拟数据时,这些影响可能会被我们忽视,因为在模拟数据中,比对这一步往往比实验获得的样本更简单。文章讨论了用于定量目的的最佳比对方法,同时也引入了一种新的混合比对方法,称为 selective alignment(SA)。

文章中,作者选择了三种比对策略:

  • unspliced alignment of RNA-seq reads directly to the transcriptome
  • spliced alignment of RNA-seq reads to the annotated genome (with subsequent projection to the transcriptome)
  • (unspliced) lightweight mapping (quasi-mapping) of the RNA-seq reads directly to the transcriptome

具体的比对方法:

  • Bowtie2 – Alignment with Bowtie2 to the target transcriptome and allowing alignments with indels, followed by quantification using Salmon in alignment mode.
  • Bowtie2 strict – Alignment with Bowtie2 to the target transcriptome and disallowing alignments with indels (i.e. using the same parameters as those used by RSEM), followed by quantification using Salmon in alignment mode.
  • Bowtie2 RSEM – Alignment with Bowtie2 to the target transcriptome and disallowing alignments with indels, followed by quantification using RSEM.
  • STAR – Alignment with STAR to the target genome (aided with the GTF annotation of the transcriptome) and projected to the transcriptome allowing alignments with indels and soft clipping, followed by quantification using Salmon in alignment mode.
  • STAR strict – Alignment with STAR to the target genome (aided with the GTF annotation of the transcriptome) and projected to the transcriptome and disallowing alignments with indels or soft clipping, followed by quantification using Salmon in alignment mode.
  • STAR RSEM – Alignment with STAR to the target genome (aided with the GTF annotation of the transcriptome) and projected to the transcriptome and disallowing alignments with indels or soft clipping, followed by quantification using RSEM.
  • quasi – Quasi-mapping directly to the target transcriptome, coupled with quantification using Salmon in non-alignment mode.
  • SA– Selective alignment directly to the target transcriptome and a set of decoy sequences, coupled with quantification using Salmon in non-alignment mode.

相关内容

# For indexing, we use the following extra command line arguments, along with the regular indexing and
threads parameters:
STAR --genomeFastaFiles <fasta file> --sjdbGTFfile <gtf file> --sjdbOverhang 100
Bowtie2 default
salmon -k 23 --keepDuplicates
kallisto -k 23
# For quantification, we use the following extra command line, \
# along with regular index and threads, with each tools we compare against:
SA --mimicBT2 --useEM
quasi --rangeFactorization 4 --discardOrphansQuasi --useEM
Bowtie2 --sensitive -k 200 -X 1000 --no-discordant --no-mixed
Bowtie2 strict --sensitive --dpad 0 --gbar 99999999 --mp 1,1 \
--np 1 --score-min L,0,-0.1 --no-mixed --no-discordant -k 200 -I 1 -X 1000
Bowtie2 RSEM --sensitive --dpad 0 --gbar 99999999 --mp 1,1 \
--np 1 --score-min L,0,-0.1 --no-mixed --no-discordant -k 200 -I 1 -X 1000

STAR --outFilterType BySJout --alignSJoverhangMin 8 --outFilterMultimapNmax 20 \
--alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 \
--outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 \
--alignMatesGapMax 1000000 --readFilesCommand zcat --outSAMtype BAM Unsorted \
--quantMode TranscriptomeSAM --outSAMattributes NH HI AS NM MD \
--quantTranscriptomeBan Singleend

STAR strict --outFilterType BySJout --alignSJoverhangMin 8 --outFilterMultimapNmax \
20 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 \
--outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 \
--alignMatesGapMax 1000000 --readFilesCommand zcat --outSAMtype BAM Unsorted \
--quantMode TranscriptomeSAM --outSAMattributes NH HI AS NM MD \
--quantTranscriptomeBan IndelSoftclipSingleend

STAR RSEM --outFilterType BySJout --alignSJoverhangMin 8 --outFilterMultimapNmax \
20 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 \
--outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 \
--alignMatesGapMax 1000000 --readFilesCommand zcat --outSAMtype BAM Unsorted \
--quantMode TranscriptomeSAM --outSAMattributes NH HI AS NM MD \
--quantTranscriptomeBan IndelSoftclipSingleend \

RSEM default

kallisto default or --rf-stranded as appropriate

这里所谓的 SA 模式其实就是在 salmon 最近升级中加入的一个参数,具体可以了解 官方说明

A practical guide to methods controlling false discoveries in computational biology

DOI(url): https://doi.org/10.1186/s13059-019-1716-1

发表日期:4 June 2019

关键点

在数据分析的过程中如何更好的控制 false discoveries

参考意义

以下是 8 中可用的 FDR-controlling methods ,其中 IHW 和 BL 是考虑了协变量的现代方法。

还有 68% 的精彩内容
©著作权归作者所有,转载或内容合作请联系作者
支付 ¥3.00 继续阅读
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容