GO富集结果整体可视化

废话系列

来自于《GO富集结果整体可视化

  GO (Gene Ontology )是一个基因功能的国际标准分类体系。意在从分子功能 (Molecular Function)、生物过程 (Biological Process)、和细胞组成 (Cellular Component) 三个层面对基因和蛋白质功能进行限定和描述,建立一个适用于各种物种并能随着研究不断深入而更新的语言词汇标准。
  GO富集分析已经算是很常规的分析内容,可以很方便地将分析得到的基因集归类到不同的GO条目,从而让研究者可以轻松地得知这些基因都参与哪些生物过程。GO分析的操作这里就不再赘述了,网上有很多相关的帖子,基本上常规的物种用clusterProfiler包就可以解决了。今天我想来谈谈如何可视化GO分析的结果。对于GO富集结果的可视化,最常见的就是用条形图和气泡图来展示部分关注的条目。

  上面两种展现形式最为常见,可以很好地展示关注的条目。我们都知道有时候GO富集的条目会很多,如果想整体预览一下,有没有什么方法可以展示所有条目都涉及哪些功能呢?答案是肯定的。下面就来介绍一下simplifyEnrichment包是如何展示GO富集结果的。这里用该包中数据做一个演示。

代码

>library(simplifyEnrichment)
>go_id = random_GO(500)
> head(go_id)
[1] "GO:0070233" "GO:0007213" "GO:0061445" "GO:2000597" "GO:0010650"
[6] "GO:0055090"
>mat = GO_similarity(go_id,ont='BP')
>simplifyGO(mat)

结果如下图:

  结果看起来还是有点高大上的感觉,从图中可以看出496个GO条目根据条目名称的语意相似性被分成9个大类,每个大类右边有注释条,标明了每个类中涉及的条目关键字,有点类似词云的感觉。

结束语

  该包使用起来很简单,虽然不能准确的展示每个GO条目,但可以从整体上概览GO条目都涉及哪些方面,对于后续筛选还是很有帮助的。该包还有更为细节的用法,这里就不再赘述了,感兴趣的可以自己去摸索。按照惯例最后附上官方说明链接:Simplify Functional Enrichment ResultsWord Cloud Annotation

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容