镜像设置
前面几种设置都试过了,高级模式确实是第一次看见,新奇而又有意思。
R的配置文件 .Rprofile
Rstudio最重要的两个配置文件:在刚开始运行Rstudio的时候,程序会查看许多配置内容,其中一个就是.Renviron,它是为了设置R的环境变量(这里先不说它);而.Rprofile就是一个代码文件,如果启动时找到这个文件,那么就替我们先运行一遍(这个过程就是在启动Rstudio时完成的)
首先用file.edit()来编辑文件:
file.edit('~/.Rprofile')
然后在其中添加好上面的两行options代码
保存重启后
安装
install.package("包")
BioManager::install("包")
加载包
library()
require()
安装加载三部曲
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
示例数据直接使用内置数据集iris的简化版:
test <- iris[c(1:2,51:52,101:102),]
dplyr的5个基础函数
mutate(),新增列
mutate(test,new =Sepal.Length * Sepal.Width )
select(),按列筛选
1.按列号筛选
select(test,1)
## Sepal.Length
## 1 5.1
## 2 4.9
## 51 7.0
##52 6.4
## 101 6.3
## 102 5.8
select(test,c(1,5))
## Sepal.Length Species
##1 5.1 setosa
##2 4.9 setosa
##51 7.0 versicolor
##52 6.4 versicolor
##101 6.3 virginica
##102 5.8 virginica
2.按列名筛选
select(test,Sepal.Length)
## Sepal.Length
##1 5.1
##2 4.9
##51 7.0
##52 6.4
##101 6.3
##102 5.8
select(test, Petal.Length, Petal.Width)
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 101 6.0 2.5
## 102 5.1 1.9
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 101 6.0 2.5
## 102 5.1 1.9
3.filter()筛选行
filter(test, Species == "setosa")
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
filter(test, Species == "setosa"&Sepal.Length > 5 )
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
filter(test, Species %in% c("setosa","versicolor"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 7.0 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
4.arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.0 1.4 0.2 setosa
## 2 5.1 3.5 1.4 0.2 setosa
## 3 5.8 2.7 5.1 1.9 virginica
## 4 6.3 3.3 6.0 2.5 virginica
## 5 6.4 3.2 4.5 1.5 versicolor
## 6 7.0 3.2 4.7 1.4 versicolor
arrange(test, desc(Sepal.Length))#用desc从大到小
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.0 3.2 4.7 1.4 versicolor
## 2 6.4 3.2 4.5 1.5 versicolor
## 3 6.3 3.3 6.0 2.5 virginica
## 4 5.8 2.7 5.1 1.9 virginica
## 5 5.1 3.5 1.4 0.2 setosa
## 6 4.9 3.0 1.4 0.2 setosa
5.summarise():汇总
对数据进行汇总操作,结合group_by使用实用性强
summarise(test, mean(Sepal.Length), sd(Sepal.Length))
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
dplyr的实用技能(2个)
1:管道操作 %>% (cmd/ctr + shift + M)
加载任意一个tidyverse包即可用管道符号
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
## Species `mean(Sepal.Length)` `sd(Sepal.Length)`
##
## 1 setosa 5 0.141
## 2 versicolor 6.7 0.424
## 3 virginica 6.05 0.354
2:count统计某列的unique值
count(test,Species)
## # A tibble: 3 x 2
## Species n
##
## 1 setosa 2
## 2 versicolor 2
## 3 virginica 2
dplyr处理关系数据
即将2个表进行连接,注意:不要引入factor
options(stringsAsFactors = F)
test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test1
## x z
## 1 b A
## 2 e B
## 3 f C
## 4 x D
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)
test2
## x y
## 1 a 1
## 2 b 2
## 3 c 3
## 4 d 4
## 5 e 5
## 6 f 6
1.內连inner_join,取交集
inner_join(test1,test2,by = "x")
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
2.左连left_join
left_join(test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
left_join(test2, test1, by = 'x')
## x y z
## 1 a 1 NA
## 2 b 2 A
## 3 c 3 NA
## 4 d 4 NA
## 5 e 5 B
## 6 f 6 C
3.全连full_join
full_join( test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
## 5 a NA 1
## 6 c NA 3
## 7 d NA 4
4.半连接:返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x')
## x z
## 1 b A
## 2 e B
## 3 f C
5.反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x')
## x y
## 1 a 1
## 2 c 3
## 3 d 4
6.简单合并
在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数.