自动摘要

背景

大数据时代,信息爆炸?垃圾遍地!

互相复制的新闻
重复推送的广告
大量冗余无效的信息

所以需要筛选信息,通过文本自动摘要
应用场景:P2C网站、企业;论文网站、新闻网站、搜索引擎
使用价值:冗余去除、片面提取、杂质剔除


概览

有监督:人工摘要后契合。无监督:算法生成。

基本原理
  • 文本信息都在句子中。
  • 标点符号进行分句或分段。
  • 找出信息最多的句/段。(关键词、相似度、潜在语义等)
实现思路

抽取式

  • 定义:提取关键词、句子形成摘要
  • 各句打分:
    • 基于统计:如TextTeaser,基于长度、位置、关键词等信息进行评分
    • 基于网络图:如TextRank,按照节点权重
    • 基于潜在语义:使用主题模型,挖掘隐藏信息进行评分
    • 基于各句和文章之间的相似度
    • TF-IDF提取关键词后基于关键词首先出现或包含数量多少
  • 句子重组:保证可读性

压缩式

  • 压缩信息,可能损失

生成式

  • 最接近摘要的本质,难度大
效果评价

人工评价(标准摘要来自专家)

  • Edmundson:计算和标准摘要的句子的重合率
  • ROUGE:计算和标准摘要的重叠基本单元(n元语法、词序列、词对)的召回率
    • ROUGE-N:N-gram
    • ROUGE-L:最长公共子序列
    • ROUGE-W:连续匹配赋予更大权重
    • ROUGE-S:考虑了所有按词序排列的词对。比ngram更深入反应句子级词序。
    • ROUGE-S4/S9:多文档

Python实现

思路
  • 语料处理
  • 分句
  • 特征工程
  • 向量化
  • 句子评分
  • 重组生成摘要
# 语料
chapter.txt[1]
# 分句(过于简略,未考虑说话的双引号内算一句等)
def cut_sentence(intxt):
    delimeters=frozenset('。!?')
    buf=[]
    for ch in intxt:
        buf.append(ch)
        if delimeters.__contains__(ch):
            yield ''.join(buf)
            buf=[]
    if buf:
        yield ''.join(buf)

sentdf=pd.DataFrame(cut_sentence(chapter.txt[1]))
# 去除过短的句子
sentdf['txtlen']=sentdf[0].apply(len)
sentlist=sentdf[0][sentdf.txtlen>20]
print(len(sentlist))
# 向量化
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

txtlist=[''.join(jieba.lcut(w)) for w in sentlist]

vectorizer=CountVectorizer()
X=vectorizer.fit_transform(txtlist)
tfidf_matrix=TfidfTransformer().fit_transform(X)
# 句子评分
import networkx as nx
similarity=nx.from_scipy_sparse_matrix(tfidf_matrix *tfidf_matrix.T)
scores=nx.pagerank(similarity)

tops=sorted(scores.items(),key=lambda x:x[1], reverse=True)
# 查看评分结果
print(sentlist.iloc[tops[0][0]])
print(sentlist.iloc[tops[1][0]])
sentlist.iloc[tops[2][0]]
# 重组生成摘要
topn=5
topsent=sorted(tops[:topn])
abstract=''
for i in topsent:
    abstract=abstract+sentlist.iloc[i[0]]+'......'
abstract[:-6]

改进:

  • 分句更精确
  • 评分标准尝试pagerank以外的算法
  • 不是分句,而通过分段找出关键段落,然后提取潜在语义或关键词、句。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352