阿里国际发布最新版多模态大模型Ovis,拿下开源第一

看一眼菜品图就知道怎么做、能给植物看病、能把手写英文准确翻译成中文、还能精准分析财报数据……多模态能力再次升级!阿里国际AI团队发布了一款多模态大模型Ovis,在图像理解任务上不断突破极限,多种具体的子类任务中均达到了SOTA(最新技术)水平。

多模态大模型能够处理和理解多种不同类型的数据输入,例如文本、图像。与大型语言模型(LLMs)相比,大语言模型在处理和生成文本数据方面有专长,而多模态大模型能够处理非文本数据,如图像等等。

根据多模态权威综合评测平台OpenCompass的数据,Ovis1.6-Gemma2-9B在30B参数以下的模型中取得了综合排名第一,赶超MiniCPM-V-2.6等行业优秀大模型

Ovis在OpenCompass上的测评数据情况

据介绍,Ovis能够在数学推理问答、物体识别、文本提取和复杂任务决策等方面展现出色表现。例如,Ovis可以准确回答数学问题,识别花的品种,支持多种语言的文本提取,甚至可以识别手写字体和复杂的数学公式。

案例1:Ovis对手写文案的识别及翻译能力

案例2:Ovis对复杂数学公式的处理能力

案例3:Ovis通过对图片的识别处理能够给出菜谱

具体来说,Ovis模型有五大优点:

1、创新架构设计:可学习的视觉嵌入词表:首次引入,将连续的视觉特征转换为概率化的视觉token,再经由视觉嵌入词表加权生成结构化的视觉嵌入,克服了大部分MLLM中MLP连接器架构的局限性,大幅提升多模态任务表现。

2、高分图像处理:动态子图方案:支持处理极端长宽比的图像,兼容高分辨率图像,展现出色的图像理解能力。

3、全面数据优化:多方向数据集覆盖:全面覆盖Caption、VQA、OCR、Table、Chart等各个多模态数据方向,显著提升多模态问答、指令跟随等任务表现。

4、卓越模型性能:Ovis展现出了优异的榜单表现。在多模态权威综合评测Opencompass上,Ovis1.6-Gemma2-9B在30B参数以下的模型中取得了综合排名第一,超过了Qwen2-VL-7B、MiniCPM-V-2.6等模型。尤其在数学问答等方向表现媲美70B参数模型;在幻觉等任务中,Ovis-1.6的幻觉现象和错误率显著低于同级别的模型,展现了更高的生成文本质量和准确性。

5、全部开源可商用:Ovis系列模型License采用 Apache 2.0。Ovis 1.0、1.5的数据、模型、训练和推理代码都已全部开源,可复现。Ovis1.6系列中的Ovis1.6-Gemma2-9B也已开源权重。

在AI领域,多模态大模型的应用场景非常广泛,包括但不限于自动驾驶、医疗诊断、视频内容理解、图像描述生成、视觉问答等。

例如,在自动驾驶领域,多模态大模型可以整合来自摄像头、雷达和激光雷达的数据,以实现更精准的环境感知和决策。由于多模态大模型能够学习如何联合理解和生成跨多种模式的信息,也被视为朝向通用人工智能的下一个步骤。

根据此前媒体报道,阿里国际在去年成立了一支AI团队,目前已经在40多个电商场景里测试了AI能力,覆盖跨境电商全链路,包括商品图文、营销、搜索、广告投放、SEO、客服、退款、店铺装修等,其中多个应用场景均基于Ovis模型进行开发,已帮助50万中小商家、对1亿款商品进行了信息优化。

据介绍,商家的AI需求不断增长,近半年的数据显示,平均每两个月,商家对于AI的调用量就翻1倍

附相关链接:

论文arXiv: https://arxiv.org/abs/2405.20797

Github:https://github.com/AIDC-AI/Ovis

Huggingface:https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B

Demo:

https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Gemma2-9B

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容