题目描述:
A sequence X_1, X_2, ..., X_n is fibonacci-like if:
- n >= 3
- X_i + X_{i+1} = X_{i+2} for all i + 2 <= n
Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)
Example 1:
Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].
解题思路:
这道题是求最长斐波那契子序列,做法:
- 两层 for 循环,得到斐波那契的前两个数 first 和 second;
- 判断这两个数的和(第三个数)third 是否在数组中;
- 如果 third 在数组中,斐波那契三个数整体前进一步,即更新这三个数:
first = second, second = third, third = first + second
,长度加 1,然后回到上一步继续判断; - 如果 third 不在数组中,更新最大长度的值。
注意:在编程的时候,数组转化为集合 set,可以使判断 third 的时间复杂度为 O(1)。
时间复杂度为 O((N^2) * logM),log M 来自于循环判断 third 是否在数组中;空间复杂度为 O(N),即开辟集合 set 所占大小。
Python3 实现:
class Solution:
def lenLongestFibSubseq(self, A: List[int]) -> int:
setA = set(A)
ans = 0
for i in range(len(A)):
for j in range(i+1, len(A)):
first, second = A[i], A[j]
third = first + second
length = 2
while third in setA: # 当 third 在数组中,更新三个值继续判断
length += 1
first = second
second = third
third = first + second
ans = max(ans, length) # 更新最大长度
return ans if ans >= 3 else 0