spark概念

spark源码:https://github.com/apache/spark

官网:xxxx.apache.org

源码:https://github.com/apache/xxxx

RDD

RDD:Resilient Distributed Dataset 弹性 分布式 数据集
1.RDD是一个抽象类
2.带泛型的,可以指出多种类型:String,Person,User....

Represents an
immutable:不可变
partitioned collection of elements :分区
Array(1,2,3,4,5,6,7,8,9,10) 3个分区: (1,2,3) (4,5,6) (7,8,9,10)
that can be operated on in parallel: 并行计算的问题

单机存储/计算==>分布式存储/计算
1)数据的存储: 切割 HDFS的Block
2)数据的计算: 切割(分布式并行计算) MapReduce/Spark
3)存储+计算 : HDFS/S3+MapReduce/Spark

RDD的特性:

Internally, each RDD is characterized by five main properties:
- A list of partitions
    一系列的分区/分片

     partitions都有index
     为什么重写eaquals方法时要重写hashcode方法
- A function for computing each split/partition
    y = f(x)
    rdd.map(_+1)  
    对一个rdd执行一个函数,就是对rdd内的所有分区执行同一个函数
- A list of dependencies on other RDDs
    rdd1 ==> rdd2 ==> rdd3 ==> rdd4
    dependencies: *****

    rdda = 5个partition
    ==>map
    rddb = 5个partition
    依赖关系
- Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
    hash还是range
- Optionally, a list of preferred locations to compute each split on (e.g. 
block locations for an HDFS file)

    数据在哪优先把作业调度到数据所在的节点进行计算:移动数据不如移动计算
    为什么location有s?

五大特性源码体现:

def compute(split: Partition, context: TaskContext): Iterator[T] 特性二
def getPartitions: Array[Partition]  特性一
def getDependencies: Seq[Dependency[_]] = deps  特性三
def getPreferredLocations(split: Partition): Seq[String] = Nil  特性五
val partitioner: Option[Partitioner] = None  特性四

第一要务:创建SparkContext

连接到Spark“集群”:local、standalone、yarn、mesos
通过SparkContext来创建RDD、广播变量到集群

在创建SparkContext之前还需要创建一个SparkConf对象

RDD创建方式

Parallelized Collections
External Datasets

If using a path on the local filesystem, the file must also be accessible at the same path on worker nodes
1)目前是在单节点上的:一个节点, hello.txt只要在这台机器上有就行了
2)standalone: Spark集群: 3个节点 local path 都是从节点的本地读取数据 不建议

开发pyspark应用程序
1) IDE: IDEA pycharm
2) 设置基本参数: python interceptor PYTHONPATH SPARK_HOME 2zip包
3)开发
4)使用local进行本地测试

提交pyspark应用程序($SPARK_HOME)
./spark-submit --master local[2] --name spark0301 /home/hadoop/script/spark0301.py
具体提交的详细说明参见:http://spark.apache.org/docs/latest/submitting-applications.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容