Pandas13——excel透视表

excel透视表

要求:

1、表格有ID、Total、Date、Product、Subcategor、Category数据
2、以Category和Date的年份分组统计Total的总和,个数。

import pandas as pd
from datetime import date
import numpy as np

# 输出能美观一些
pd.set_option('display.max_columns', 10000, 'display.max_rows', 10000,'display.width', 1000)


Orders=pd.read_excel("D:\\python_pandas\\sample\\demo14\\Orders.xlsx", dtype={'Date': date})
Orders["year"]=pd.DatetimeIndex(Orders.Date).year
#方法一:
tb = Orders.pivot_table(values=["Total","ID"],index="Category",columns="year",aggfunc={"Total":np.sum,"ID":len})

print(tb)
               ID                              Total                                          
year         2011   2012   2013   2014          2011          2012          2013          2014
Category                                                                                      
Accessories   360   1339  20684  18811  2.082077e+04  1.024398e+05  6.750247e+05  4.737876e+05
Bikes        3826  10776  16485   8944  1.194565e+07  2.898552e+07  3.626683e+07  1.745318e+07
Clothing      655   4045  10266   6428  3.603148e+04  5.555877e+05  1.067690e+06  4.612336e+05
Components    875   5529   9138   3156  6.391730e+05  3.880758e+06  5.612935e+06  1.669727e+06

pivot_table图解说明

#方法二:
g = Orders.groupby(["Category","year"])
s = g["Total"].sum()
c = g["ID"].count()
tb2 = pd.DataFrame({"sum":s,"count":c})

print(tb2)
打印结果:
                           sum  count
Category    year                     
Accessories 2011  2.082077e+04    360
            2012  1.024398e+05   1339
            2013  6.750247e+05  20684
            2014  4.737876e+05  18811
Bikes       2011  1.194565e+07   3826
            2012  2.898552e+07  10776
            2013  3.626683e+07  16485
            2014  1.745318e+07   8944
Clothing    2011  3.603148e+04    655
            2012  5.555877e+05   4045
            2013  1.067690e+06  10266
            2014  4.612336e+05   6428
Components  2011  6.391730e+05    875
            2012  3.880758e+06   5529
            2013  5.612935e+06   9138
            2014  1.669727e+06   3156
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354