在大规模数据处理中,经常会遇到的一类问题:在海量数据中找出出现频率最高的前k个数,或者从海量数据中找出最大的前k个数,这类问题通常被称为top K问题。例如,在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载最高的前10首歌等。
eg:有1亿个浮点数,如果找出期中最大的10000个?
该题目解法有很多,以下逐个阐述
最容易想到的方法是将数据全部排序,然后在排序后的集合中进行查找,最快的排序算法的时间复杂度一般为O(nlogn),如快速排序。但是在32位的机器上,每个float类型占4个字节,1亿个浮点数就要占用400MB的存储空间,对于一些可用内存小于400M的计算机而言,很显然是不能一次将全部数据读入内存进行排序的。其实即使内存能够满足要求(我机器内存都是8GB),该方法也并不高效,因为题目的目的是寻找出最大的10000个数即可,而排序却是将所有的元素都排序了,做了很多的无用功。
第二种方法为局部淘汰法,该方法与排序方法类似,用一个容器保存前10000个数,然后将剩余的所有数字——与容器内的最小数字相比,如果所有后续的元素都比容器内的10000个数还小,那么容器内这个10000个数就是最大10000个数。如果某一后续元素比容器内最小数字大,则删掉容器内最小元素,并将该元素插入容器,最后遍历完这1亿个数,得到的结果容器中保存的数即为最终结果了。此时的时间复杂度为O(n+m^2),其中m为容器的大小,即10000。
第三种方法是分治法,将1亿个数据分成100份,每份100万个数据,找到每份数据中最大的10000个,最后在剩下的100X10000个数据里面找出最大的10000个。如果100万数据选择足够理想,那么可以过滤掉1亿数据里面99%的数据。100万个数据里面查找最大的10000个数据的方法如下:用快速排序的方法,将数据分为2堆,如果大的那堆个数N大于10000个,继续对大堆快速排序一次分成2堆,如果大的那堆个数N大于10000个,继续对大堆快速排序一次分成2堆,如果大堆个数N小于10000个,就在小的那堆里面快速排序一次,找第10000-n大的数字;递归以上过程,就可以找到第1w大的数。参考上面的找出第1w大数字,就可以类似的方法找到前10000大数字了。此种方法需要每次的内存空间为10^6*4=4MB,一共需要101次这样的比较。
第四种方法是Hash法。如果这1亿个书里面有很多重复的数,先通过Hash法,把这1亿个数字去重复,这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间,然后通过分治法或最小堆法查找最大的10000个数。
第五种方法采用小顶堆。首先读入前10000个数来创建大小为10000的最小堆,建堆的时间复杂度为O(mlogm)(m为数组的大小即为10000),然后遍历后续的数字,并于堆顶(最小)数字进行比较。如果比最小的数小,则继续读取后续数字;如果比堆顶数字大,则替换堆顶元素并重新调整堆为最小堆。整个过程直至1亿个数全部遍历完为止。然后按照中序遍历的方式输出当前堆中的所有10000个数字。该算法的时间复杂度为O(nmlogm),空间复杂度是10000(常数)。
小顶堆可以参照前面的堆排序,解决top k问题是堆排序算法的一种延伸。
对于该种算法,假设一共是n个数,找前m个大的。第一次建堆并调整的时间大约为mlog(m),那么对于剩下的每个元素,最坏的情况下就是每个都调整堆,堆调整一次的时间复杂度为log(m),所以总的时间复杂度为(n-m)log(m) + mlog(m) = nlog(m)
小顶堆的方法是最直观的解决top k问题的方法,还有一种更为高效的方法:Quick Select算法。
最直观:小顶堆(大顶堆 -> 最小100个数);
较高效:Quick Select算法。
Quick Select脱胎于快速排序(Quick Sort),两个算法的作者都是Hoare,并且思想也非常接近:选取一个基准元素pivot,将数组切分(partition)为两个子数组,比pivot大的扔左子数组,比pivot小的扔右子数组,然后递推地切分子数组。Quick Select不同于Quick Sort的是其没有对每个子数组做切分,而是对目标子数组做切分。其次,Quick Select与Quick Sort一样,是一个不稳定的算法;pivot选取直接影响了算法的好坏,worst case下的时间复杂度达到了 O(n2)。
Quick Select的目标是找出第k大元素,所以
- 若切分后的左子数组的长度 > k,则第k大元素必出现在左子数组中;
- 若切分后的左子数组的长度 = k-1,则第k大元素为pivot;
- 若上述两个条件均不满足,则第k大元素必出现在右子数组中。
下面给出Quick Select的Java实现:
public int findKthLargest(int[] nums, int k) {
return quickSelect(nums, k, 0, nums.length - 1);
}
// quick select to find the kth-largest element
public int quickSelect(int[] arr, int k, int left, int right) {
if (left == right) return arr[right];
int index = partition(arr, left, right);
if (index - left + 1 > k)
return quickSelect(arr, k, left, index - 1);
else if (index - left + 1 == k)
return arr[index];
else
return quickSelect(arr, k - index + left - 1, index + 1, right);
}
上面给出的代码是求解第k大元素;若想要得到Top K元素,仅需要将代码做稍微的修改:比如,扫描完成后的小顶堆对应于Top K,Quick Select算法用中间变量保存Top K元素。