6.Adversarial search(Minmax and α–β pruning )

In AI, a game* is often a deterministic, turn-taking, two- player, zero-sum game of perfect information:
1.deterministic
2.two agents
3.whose action alternate
4.utility values are opposite e.g. (+1,-1) fully observable

Defination of Game

A Game consists of:
1.sets of players P, states S (board and player to play), and moves M.
2.an initial state s0 ∈ S which specifies how the game is set up.
3.Player(s)∈ P : defines the player to move in state s.
4.Moves(s)∈ 2M : defines the set of legal moves in state s.
5.Result(s,m)∈ S: defines the result of perfoming move m in state s.
6.Terminal(s)∈ B: the terminal test says whether the game is over.
7.Utility(s,p)∈ R: the utility function gives a numeric value to terminal states from the point of view of a given player, e.g. {+1, −1, 0} for chess.

A Game is defined by an initial state, a successor function, a terminal test, and a utility function

Defination of Minimax

Perfect play for deterministic, two-player, zero-sum, perfect-information games.

Idea: choose move to position with highest minimax value
= best achievable utility against best possible opponent

Computing the Minimax value:

  1. Apply utility function to each leaf of the game tree
  2. Back-up values from the leaves through inner nodes up to the root:
    (a) min node: compute the min of its children values
    (b) max node: compute the max of its children values
  3. At the root: choose the move leading to the child of highest value
Minimax-Value(s) =
Utility(s, max)                           if Terminal(s)
maxm∈Moves(s) Minimax-Value(Result(s, m)) if Player(s) = max 
minm∈Moves(s) Minimax-Value(Result(s, m)) if Player(s) = min

Minimax algorithm:
function Minimax-Decision(state) returns a move
function Max-Value(state) returns a utility value
function Min-Value(state) returns a utility value

The minimax algorithm select optimal actions for two-player zero-sum games of perfect information by a depth first exploration of the game-tree

α–β pruning

A parent node passes its current values for α and β to its children in turn. A child passes back up its value v to the parent.
The parent compares v to α (min) or β (max) to decide whether to prune the child’s sibling and if so return v to the parent.
Otherwise, it updates its current values for α (max) or β (min) using v and go on.

Example of α–β pruning

Alpha-beta pruning does not compromise optimality but increases efficiency by eliminating provably irrelevant subtrees.
Good move ordering improves effectiveness of pruning. Perfect ordering (unachievable): increasing order for max and decreasing order for min.

Changes to Minmax(in realtime situation)

Limit search depth and estimate expected utility

1.Use Cutoff test instead of Terminal test
– Cutoff(s,d): true iff the state s encountered at depth d in the tree must be considered as a leaf (or s is terminal).

2.Use Eval instead of Utility
– Eval(s,p) i.e., evaluation function that estimates the expected utility of cutoff state s wrt player p, and correlates with chances of winning

Minimax-Value(s, d) =
Eval(s, max)                                       if Cutoff(s, d)
maxm∈Moves(s)D-Minimax-Value(Result(s,m),d+1)      ifPlayer(s)=max 
minm∈Moves(s) D-Minimax-Value(Result(s, m), d + 1) if Player(s) = min

It is not feasible to consider the whole game tree (even with alpha-beta), so we need to cut the search off at some point and apply an evaluation function that gives an estimate of the expected utility of a state

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容

  • 文件获取:链接:http://pan.baidu.com/s/1bp6bjx9 密码:72wh 实验吧铁人三项之m...
    Sund4y阅读 3,236评论 0 1
  • 昨晚我输给一辆AE86,他用惯性飘移过弯,他的车很快,我只看到他有个豆腐店的招牌,你知道吗?如果你知道他是谁的话,...
    TKJun阅读 215评论 0 4
  • 如何使用requests登录豆瓣并且爬取内容Note:1.如果登录之后要去其他页面查看相关内容得记录session...
    法号少林阅读 546评论 0 1
  • 强制退出应用程序 Command + Shift + esc 组合键,会出现一个窗口让你强退软件 Mac神器 1....
    任梦RM阅读 284评论 0 0
  • 章节,第七节 内容,用全身心倾听 探讨如何倾听他人,了解他们的观察、感受、需要和请求,并给予反馈。 不论别人以什么...
    霄歌阅读 285评论 0 0