数据结构与算法--跳表

跳表 = 链表 + 多级索引

跳表使用空间换时间的设计思路,通过构建多级索引来提高查询的效率,实现了基于链表的“二分查找”。跳表是一种动态数据结构,支持快读的插入、删除、查找操作,时间复杂度都是O(logn)。

跳表跳表的空间复杂度是O(n)。跳表的实现非常灵活,可以通过改变索引构建策略,有效平衡执行效率和内存消耗。跳表的代码比起红黑树来说,要简单、易读。

链表加多级索引的结构,就是跳表

对于一个单链表,即便链表中存储的数据是有序的,如果要查找某个数据,也只能从头到尾遍历,时间复杂度是O(n)。

对于链表建立一级“索引”,没两个结点提取一个结点到上一级,把抽出来的那一级叫做索引索引层。图中的 down表示down指针,指向下一级结点。

这样就可以先在索引层遍历,然后通过索引层结点的down指针,下降到原始链表这一层,继续遍历。

比如要查找16,当在索引层遍历到13时,发现索引层下一个结点是17大于目标16,则可从13的down指针下降到原始链表继续遍历。这样只需要再遍历2个结点,就可以找到值等于16的这个结点了。原来查找16,需要遍历10个结点,加入一层索引后只需要遍历7个结点。

加上一层索引之后,查找一个结点需要遍历的结点个数减少了,查找效率提高了。继续再加一级索引,在第一级索引的基础之上,每两个结点就抽出一个结点到第二级索引。现在再查找16,只需要遍历6个结点了,需要遍历的结点数量又减少了。

下图是一个包含64个结点的链表,建立五级索引。

在五级索引的作用下,查找62只需要遍历11个结点。当链表的长度n比较大时,比如1000、10000的时候,在构建多级索引之后,查找效率的提升就会非常明显。

跳表的时间复杂度

一个链表里有n个结点,每两个结点会抽出一个结点作为上一级索引的结点,那第一级索引的结点个数大约就是n / 2,第二级索引的结点个数大约就是n / 4,第三级索引的结点个数大约就是n / 8,依此类推,也就是说,第k级索引的结点个数就是第k - 1级索引的结点个数的1 / 2,那第k级索引结点的个数就是n / (2 ^ k)

假设索引有h级,最高级的索引有2个结点,则n / (2 ^ h) = 2,即h = logn - 1。加上原始链表这一层,整个跳表的高度就是logn。在跳表中查询某个数据的时候,如果每一层都要遍历m个结点,那在跳表中查询一个数据的时间复杂度就是O(m * logn)。

按照每两个结点提取一个结点到上一级建立索引这种数据结构,每一级索引都最多只需要遍历3个结点,那么m = 3。

假设要查找的数据是x,在第k级索引中遍历到y结点之后,发现x大于y,小于后面的结点z,所以通过y的down指针,从第k级索引下降到第k - 1级索引。在第k - 1级索引中,y和z之间只有3个结点(包含y和z),所以在k - 1级索引中最多只需要遍历3个结点,依此类推,每一级索引都最多只需要遍历3个结点。

所以在跳表中查询任意数据的时间复杂度就是O(logn)。

跳表的空间复杂度分析

假设原始链表大小为n,那第一级索引大约有n / 2个结点,第二级索引大约有n / 4个结点,以此类推,每上升一级就减少一半,直到剩下2个结点。每层索引的结点数为:
n / 2, n / 4, n / 8, ..., 8, 4, 2
这几级索引的结点总和就是 n / 2 + n / 4 + n / 8 + ... + 8 + 4 + 2 = n - 2。所以跳表的空间复杂度是O(n)。

将包含n个结点的单链表构造成跳表,需要额外再用接近n个结点的存储空间。

如果每三个结点或五个结点,抽一个结点到上级索引:

那第一级索引需要大约n / 3个结点,第二级索引需要大约n / 9个结点。每往上一级,索引结点个数都除以3。为了方便计算,假设最高一级的索引结点个数是1。每3个结点抽一个,每层索引的结点数为:
n / 3, n / 9, n / 27, ..., 9, 3, 1
总的索引结点个数为n / 3 + n / 9 + n / 27 + ...+ 9 + 3 + 1 = n / 2。空间复杂度依然是O(n),但比每两个结点抽一个结点的索引构建方法,减少了一半的索引结点存储空间。

在实际的软件开发中,原始链表中存储的有可能是很大的对象,而索引结点只需要存储关键值和几个指针,并不需要存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。

跳表动态的插入和删除

跳表插入、删除操作的时间复杂度是O(logn)。

对于删除操作,如果这个结点在索引中也有出现,删除原始链表中的结点之后还要删除对应的索引。

查找要删除的结点的时候,一定要获取前驱结点。(双向链表不需要考虑这个问题)

跳表索引动态更新

不停地往跳表中插入数据时,如果不更新索引,就有可能出现某2个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。

作为一种动态数据结构,需要某种手段来维护索引与原始链表大小之间的平衡:

如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。

往跳表中插入数据的时候,可以同时将这个数据插入到部分索引层中。通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值k,就将这个结点添加到第一级到第k级索引中。

Redis用跳表实现有序集合

Redis中的有序集合是通过跳表来实现的,严格点讲,其实还用到了散列表。

Redis中的有序集合支持的核心操作主要有:

  • 插入一个数据;
  • 删除一个数据;
  • 查找一个数据;
  • 按照区间查找数据;
  • 迭代输出有序序列。

其中,插入、删除、查找以及迭代输出有序序列这几个操作,红黑树也可以完成,时间复杂度跟跳表一样的。但是,按区间来查找数据这个操作,红黑树的效率没有跳表高。

对于按照区间查找数据这个操作,跳表可以做到O(logn)的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了,这样做非常高效。

跳表相对红黑树而言代码更容易实现,简单就意味着可读性好,不容易出错。还有,跳表更加灵活,它可以通过改变索引构建策略,有效平衡执行效率和内存消耗。

跳表的简易代码实现

public class SkipList {

  private static final float SKIPLIST_P = 0.5f;
  private static final int MAX_LEVEL = 16;

  private int levelCount = 1;

  private Node cls = new Node();  // 带头链表

  public Node find(int value) {
    Node p = cls;
    for (int i = levelCount - 1; i >= 0; --i) {
      while (p.forwards[i] != null && p.forwards[i].data < value) {
        p = p.forwards[i];
      }
    }

    if (p.forwards[0] != null && p.forwards[0].data == value) {
      return p.forwards[0];
    } else {
      return null;
    }
  }

  public void insert(int value) {
    int level = randomLevel();
    Node newNode = new Node();
    newNode.data = value;
    newNode.maxLevel = level;
    Node update[] = new Node[level];
    for (int i = 0; i < level; ++i) {
      update[i] = cls;
    }

    // record every level largest value which smaller than insert value in update[]
    Node p = cls;
    for (int i = level - 1; i >= 0; --i) {
      while (p.forwards[i] != null && p.forwards[i].data < value) {
        p = p.forwards[i];
      }
      update[i] = p;// use update save node in search path
    }

    // in search path node next node become new node forwords(next)
    for (int i = 0; i < level; ++i) {
      newNode.forwards[i] = update[i].forwards[i];
      update[i].forwards[i] = newNode;
    }

    // update node hight
    if (levelCount < level) levelCount = level;
  }

  public void delete(int value) {
    Node[] update = new Node[levelCount];
    Node p = cls;
    for (int i = levelCount - 1; i >= 0; --i) {
      while (p.forwards[i] != null && p.forwards[i].data < value) {
        p = p.forwards[i];
      }
      update[i] = p;
    }

    if (p.forwards[0] != null && p.forwards[0].data == value) {
      for (int i = levelCount - 1; i >= 0; --i) {
        if (update[i].forwards[i] != null && update[i].forwards[i].data == value) {
          update[i].forwards[i] = update[i].forwards[i].forwards[i];
        }
      }
    }

    while (levelCount>1&&cls.forwards[levelCount]==null){
      levelCount--;
    }

  }

  // 理论来讲,一级索引中元素个数应该占原始数据的 50%,二级索引中元素个数占 25%,三级索引12.5% ,一直到最顶层。
  // 因为这里每一层的晋升概率是 50%。对于每一个新插入的节点,都需要调用 randomLevel 生成一个合理的层数。
  // 该 randomLevel 方法会随机生成 1~MAX_LEVEL 之间的数,且 :
  //        50%的概率返回 1
  //        25%的概率返回 2
  //      12.5%的概率返回 3 ...
  private int randomLevel() {
    int level = 1;

    while (Math.random() < SKIPLIST_P && level < MAX_LEVEL)
      level += 1;
    return level;
  }

  public void printAll() {
    Node p = cls;
    while (p.forwards[0] != null) {
      System.out.print(p.forwards[0] + " ");
      p = p.forwards[0];
    }
    System.out.println();
  }

  public class Node {
    private int data = -1;
    private Node forwards[] = new Node[MAX_LEVEL];
    private int maxLevel = 0;

    @Override
    public String toString() {
      StringBuilder builder = new StringBuilder();
      builder.append("{ data: ");
      builder.append(data);
      builder.append("; levels: ");
      builder.append(maxLevel);
      builder.append(" }");

      return builder.toString();
    }
  }

}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,457评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,837评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,696评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,183评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,057评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,105评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,520评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,211评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,482评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,574评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,353评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,897评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,174评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,489评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,683评论 2 335