Pytorch_第六篇_深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数

深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数


Introduce

在上一篇“深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习”中我们介绍了监督学习和无监督学习相关概念。本文主要介绍神经网络常用的损失函数。

以下均为个人学习笔记,若有错误望指出。


神经网络常用的损失函数

pytorch损失函数封装在torch.nn中。

损失函数反映了模型预测输出与真实值的区别,模型训练的过程即让损失函数不断减小,最终得到可以拟合预测训练样本的模型。

note:由于PyTorch神经网络模型训练过程中每次传入一个mini-batch的数据,因此pytorch内置损失函数的计算出来的结果如果没有指定reduction参数,则默认对mini-batch取平均

以下对几个常用的损失函数以及其应用场景做一个简单总结。(以下损失函数的公式均代表单个min-batch的损失,且假设x为神经网络的预测输出,y为样本的真实值,xi为一个mini-batch中第i个样本的预测输出,yi同理,n为一个批量mini-batch的大小

  • nn.L1Loss(L1损失,也称平均绝对误差MAE):计算模型输出x与目标y之间差的绝对值。常用于回归任务

loss(x,y) = {1\over n}\sum|x_i-y_i|

'''代码示例'''
loss_func = torch.nn.L1Loss(reduction='mean')
'''note: 
reduction=None 啥也不干
reduction='mean' 返回loss和的平均值
reduction='mean' 返回loss的和。
不指定即默认mean。
'''
  • nn.MSELoss(L2损失,也称均方误差MSE):计算模型输出x与目标y之间差的平方的均值,均方差。常用于回归任务

loss(x,y) = {1\over n}\sum(x_i-y_i)^2

'''代码示例'''
loss_func = torch.nn.MSELoss(reduction='mean')
# note: reduction同上。
  • nn.BCELoss(二进制交叉熵损失):计算模型输出x与目标y之间的交叉熵。(我对于交叉熵的理解,交叉熵为相对熵(即KL散度,用来衡量两个分布的差异程度)中的一项,最小化两个分布的差异,即最小化相对熵,由相对熵公式,由于真实分布是确定的,那么最小化相对熵就是最小化交叉熵,而最小化交叉熵的目标就是寻找一个预测分布尽可能逼近真实分布,这和我们模型的训练目标是一致的,即让模型预测逼近样本真实值,参考链接常用于二分类任务

loss(x,y) = {1\over n}\sum-w_i[y_i*logx_i + (1-y_i)*log(1-x_i)]

'''代码示例'''
loss_func = torch.nn.BCELoss(weight=None, reduction='mean')
# note:
# weight为长度为n的tensor,用来指定一个batch中各样本占有的权重,如公式中的wi,不指定默认为各样本权重均为1。
# reduction同上。

# 用的时候需要在该层前面加上 Sigmoid 函数。
  • nn.NLLLoss(负对数似然损失):将神经网络输出的隶属各个类的概率向量x与对应真实标签向量(个人理解应该是one-hot向量吧)相差再相加,最后再取负。如果不取负的话,应该是loss值越大预测标签越接近真实标签,取负的话反过来,越小则越接近真实标签,符合loss函数的定义。==常用于多分类任务。== 以下公式假设节点xi属于第j类,x[j]为预测的x属于第j类的概率,且w[j]为第j类的权重

loss(x,class) = {1\over n}\sum -w[j]*x[j]

'''代码示例'''
loss_func = torch.nn.NLLLoss(weight=None,  reduction='mean')
# note:
# weight同上,如公式中的w代表各个类在损失中占有的权重,即类的重要程度,若不赋予权重w,则各类同等重要,上述公式中的w[class]去掉。
# reduction同上。

  • nn.CrossEntropyLoss (交叉熵损失):如上述二进制交叉熵所示,随着预测的概率分布越来越接近实际标签,交叉熵会逐渐减小。pytorch将nn.LogSoftmax()和nn.NLLLoss()组合到nn.CrossEntropyLoss(),即调用nn.CrossEntropyLoss() 底层会调用上述两个函数,可以理解为 CrossEntropyLoss = LogSoftmax + NLLLoss。因此一般多分类任务都常用交叉熵损失。 以下label_i代表节点xi的真实标签,c为总的标签数。

loss(x,class) = {1 \over n}\sum-w[label_i]log{exp(x_i[label_i])\over \sum_{j=1}^cexp(x[j])} = {1 \over n}\sum w[label_i](-x_i[label_i]+log(\sum_{j=1}^c)exp(x[j]))

'''代码示例'''
loss_func = torch.nn.CrossEntropyLoss(weight=None,reduction='mean')

# note:
# weight同nn.NLLLoss。
# reduction同上。

本文参考-1

本文参考-2

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352