ForkJoinPool简介

ForkJoinPool

背景描述

过去我们在线程池解决问题时,通常维护了一个阻塞的任务队列。每个工作线程在任务完成后,就会去任务队列里面寻找任务。这种方式在我们执行数量较多且不互相依赖的任务时非常方便且高效。但是当我们需要执行一个很大的任务时,普通的线程池似乎就很难有什么帮助了。

在JDK7中新增了ForkJoinPool。ForkJoinPool采用分治+work-stealing的思想。可以让我们很方便地将一个大任务拆散成小任务,并行地执行,提高CPU的使用率。关于ForkJoinPool的精妙之处,我们将在后面的使用中慢慢说明。

如何使用

构造方法

Android官方文档中给出了三个构造方法。我们注意到在构造方法中,我们可以设置ForkJoinPool的最大工作线程数、工作线程工厂、拒绝任务的Handler和同步模式。

执行任务

ForkJoinPool提供了两套执行任务的API,它们的区别主要是返回的结果类型不同。invoke方法返回执行的结果,而submit方法返回执行的任务。

使用示例

需求

遍历系统所有文件,得到系统中文件的总数。

思路

通过递归的方法。任务在遍历中如果发现文件夹就创建新的任务让线程池执行,将返回的文件数加起来,如果发现文件则将计数加一,最终将该文件夹下的文件数返回。

代码实现

    CountingTask countingTask = new CountingTask(Environment.getExternalStorageDirectory());
    forkJoinPool.invoke(countingTask);

    class CountingTask extends RecursiveTask<Integer> {
        private File dir;

        public CountingTask(File dir) {
            this.dir = dir;
        }

        @Override
        protected Integer compute() {
            int count = 0;

            File files[] = dir.listFiles();
            if(files != null){
                for (File f : files){
                    if(f.isDirectory()){
                        // 对每个子目录都新建一个子任务。
                        CountingTask countingTask = new CountingTask(f);
                        countingTask.fork();
                        count += countingTask.join();

                    }else {
                        Log.d("tag" , "current path = "+f.getAbsolutePath());
                        count++;
                    }
                }
            }


            return count;
        }
    }         

原理说明

所谓work-stealing模式,即每个工作线程都会有自己的任务队列。当工作线程完成了自己所有的工作后,就会去“偷”别的工作线程的任务。

那么这样的工作模式,有什么好处呢?

假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

上面的需求,如果我们用普通的线程池该如何完成?

如果我们使用newFixedThreadPool,当核心线程的路径下都有子文件夹时,它们会将路径下的子文件夹抛给任务队列,最终变成所有的核心线程都在等待子文件夹的返回结果,从而造成死锁。最终任务无法完成。

如果我们使用newCachedThreadPool,依然用上面的思路可以完成任务。但是每次子文件夹就会创建一个新的工作线程,这样消耗过大。

因此,在这样的情况下,ForkJoinPool的work-stealing的方式就体现出了优势。每个任务分配的子任务也由自己执行,只有自己的任务执行完成时,才会去执行别的工作线程的任务。

再来个例子

N项的Fibonacci数列求和,我们不再只能仰仗单个线程为我们执行任务。

package com.example;

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;

public class MyClass {

    static int computeCount = 0;

    static class Fibonacci extends RecursiveTask<Integer> {
        int n;

        Fibonacci(int n) {
            this.n = n;
        }

        @Override
        protected Integer compute() {
            computeCount ++;
            System.out.printf("Current thread is " + Thread.currentThread()
                    + "\n n = " + n + "\n");

            if (n <= 2)
                return 1;
            Fibonacci f1 = new Fibonacci(n - 1);
            f1.fork();

            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            Fibonacci f2 = new Fibonacci(n - 2);
            f2.fork();
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.printf("wati temp answer is :" + n + "\n");
            int answer = f1.join() + f2.join();
            System.out.printf("temp answer is :" + answer  + ",  n is :" +n +"\n");
            return answer;
        }
    }


    public static void main(String[] args)  {
        ForkJoinPool pool = new ForkJoinPool(2);
        Fibonacci task = new Fibonacci(5);
        int answer = 0;
        answer = pool.invoke(task);
        System.out.printf("Hello answer is :" + answer +  " , compute count is :" + computeCount);
    }
}

结语

实测下来,当情况足够复杂时,ForkJoinPool的优势会愈加明显。但是,就像快排一样,最优策略并不是一个思路走到死,当分治的区域较小时,可以将小区域改用插入排序进行排序。同理,当我们递归到情况不再复杂时,就可以转而用别的线程池进行处理。

以上

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 一、多线程 说明下线程的状态 java中的线程一共有 5 种状态。 NEW:这种情况指的是,通过 New 关键字创...
    Java旅行者阅读 4,667评论 0 44
  • 什么是Fork/Join框架 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架,采用类似于分治...
    码农历险记阅读 2,208评论 0 2
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,637评论 18 139
  • 午夜钟声响起 梦回唐朝 纤纤女子 柳骨明眉 红纱拂袖 暗香浮动 轻轻点点 驻足于江湖的风靡 惊心之处 来来往往 观...
    布尔柯阅读 225评论 0 1
  • 我们住在同一个城市,我们只有一墙之隔。我们曾出现在彼此的童年中,我们有着相同的喜好和兴趣,但,那又如何,我们还是经...
    蘑小菇_83375阅读 432评论 0 2