LIN模块介绍

概述,协议规范及模块实现

一、概述

1、如下图为一个LIN网络,包含了一个Master节点,两个Slave节点:

LIN网络

在LIN总线通讯中,Master task决定了在LIN总线上传送的是哪一帧Slave task提供每一帧所携带的数据

2、如下图为一个LIN节点的层次结构图:

LIN1.3LIN2.1的区别在于,LIN1.3没有TL层,Signal interaction放在Protocol层中,没有单独的TP层。

3、LIN总线特点:

串行通信:线间干扰小,节省线束,传输距离长;

单线传输:增强的ISO9141 (ISO 15765-1) , 总线电压基于VBAT;

 最高速率20Kbit/s:满足车身上大部分的应用需求;

单主多从结构:无需仲裁;

基于通用UART/SCI的低成本接口硬件:几乎所有MCU有具备LIN总线的硬件基础;

从节点无须晶振或陶瓷震荡器就可以实现同步:大幅度降低成本;

一条总线最多可连接16个节点:由总线电气特性决定;

支持诊断功能:支持UDS服务;

4、LIN2.1节点模型:

LIN1.3节点模型:

LIN2.1LIN1.3节点模型的差别在于LIN1.3没有Transport layer,所以也就没有流控、传输时间控制的功能,LIN1.3协议中没有对诊断及节点配置进行规范,所以在LIN1.3中完成相应的功能都放在自定义诊断中完成。

5、LIN网络拓扑结构:

1)单主任务,多从任务;

2)主节点包含主任务和从任务;

3)从节点只包含从任务;

4)主任务决定总线上的报文,从 任务发送数据;

6、LIN帧:

通信原理:主任务发送报头,从任务用响应来补充报头形成完整的报文。

报文传输:报文的内容由ID来定义。

广播:所有节点都能够接受总线上的帧。

7、调度表

1)负责调度网络各报文发送的顺序;

2)为每帧报文分配发送时隙(slot);

3)发送时隙:报文可以被发送的时间;

4)不同报文的发送时隙可能不同;

5)调度表在网络系统设计阶段确定;

6)调度表使得LIN通信具有可预测性;

8、切换调度表:

主任务可以拥有多个调度表,并在不同的调度表之间切换,该处理方式增加通信的灵活性。

二、协议规范

(1)字节间隔位于每个字节之间;

(2)响应间隔位于报头与响应之间;

(3)留给MCU足够的处理时间;

(4)帧长度可能增长;

1、字节场

1)基于SCI的通信格式;

2)发送一个字节需要10个位时间(TBIT);

2、间隔场

1)表示一帧报文的起始,由主节点发出;

2)间隔信号至少由13个显性位组成;

3)隔界定符至少由1个隐形位组成;

4)间隔场是唯一一个不符合字节场格式的场;

5)从节点需要检测到至少连续11个显性位才认为是间隔信号;

3、同步场

1)确保所有从节点使用与节点相同的波特率发送和接收数据;

2)一个字节,结构固定:0X55;

4、标识符场

1)ID的范围从0到63(Ox3f);

2)奇偶校验符(Parity)P0,P1;

5、数据场

1)数据场长度1到8个字节;

2)低字节先发,低位先发;

3)如果某信号长度超过1个字节采用低位在前的方式发送(小端);

6、校验和场

用于校验接收的数据是否正确

1)经典校验(Classic Checksum)仅校验数据场(LIN1.3)

2)增强校验(Enhance Checksum)校验标识符场与数据场内容(LIN2.0、LIN2.1)

标识符为0x3C和0x3D的帧只能使用经典校验

计算方法:反转8位求和(inverted eight bit sum)

例:Data=0x4A、0x55、0x93、0xe5

7、帧长度

最小帧长度

THEADER_NOMINAL=34*TBIT

TRESPONSE_NOMINAL=10*(NDATA+1)*TBIT   

TFRAME_NOMINAL=THEADER_NOMINAL+TRESPONSE_NOMINAL

最大帧长度

THEADER_MAX=1.4*THEADER_NOMINAL

TRESPONSE_MAX=1.4*TRESPONSE_NOMINAL

TFRAME MAX=THEADER MAX+TRESPONSE MAX

8、帧类型

1)无条件帧

使用频度最高的帧类型,无任何发送条件;

标识符(ID)为0到59(0x3B);

主任务发出报头,一个任务响应,一个或多个任务接收如下图:

帧 ID = 0x30应答部分的发布节点为从机节点1,收听节点为主机节点。典型应用如从机节点1向主机节点报告自身某信号的状态。

帧 ID = 0x31应答部分的发布节点为主机节点,收听节点为从机节点1和从机节点2。典型应用如主机节点向从机节点发布信息。

帧 ID = 0x32应答部分的发布节点为从机节点2,收听节点为从机节点1。典型应用如从机节点之间彼此通信。

2)事件触发帧

引入事件触发帧的目的是节省带宽。

BCM(Master)需要获取4个车门的状态,该如何实现?

第一种方式:

每次向四个车门请求状态,浪费带宽,因为车门状态不是经常发生。

第二种方法:

将请求四个车门状态的帧合并为一个事件触发帧,Master不需要每次发送四个帧请求车门的状态,只需要发送一个事件触发帧即可,哪个车门状态发生变化,对应的车门将响应该事件触发帧。

事件触发帧的响应会出现如下三种情况:

第一种:没有车门状态变化。

第二种:一个车门状态发生变化:

第三种:多个车门状态发生变化,此时将出现冲突,冲突处理时,Master需要像第一种处理方式一样,重新发送四帧分别请求单个车门状态。LIN1.3与LIN2.0、LIN2.1处理方式有所区别,区别在于LIN1.3不切换调度表,占用事件触发帧的时隙发送,LIN2.0、LIN2.1将切换冲突调度表处理,如下图:

3)零星帧(偶发帧(Sporadic Frame)

引入零星帧的目的也是为了节省带宽,如:BCM(Master)需要发送对4个车窗的控制指令,但是,两个车窗的控制命令很少被同时执行,同样大量的带宽被浪费。

具体方案如下:

4)诊断帧

诊断帧用来传输诊断或配置信息,一般包含8个字节。

标识符:

60(0x3C):主请求帧

61(0x3D):从响应帧

传输方式:

5)保留帧

标识符:  62(0x3e), 63(0x3f)

在LIN 2.1中未对保留帧进行定义, 留给用户自定义或将来的版本升级。

9、调度表

10、偏移

偏移(jitter)是指一帧报文实际开始发送的时刻与帧时隙起点的时间差(该值在LDF文件中定义)

    TFrame_Slot> jitter + TFrame_Maximum

11、网络管理

12、睡眠(Go To Sleep)

睡眠指令只有主节点可以发送,从节点在接到睡眠指令之后,也可以选择不进入睡眠状态而继续工作,这根据应用层协议而定。

13、唤醒(Wake Up)

在一个处于睡眠状态的LIN网络中,任何一个节点都可以发送唤醒信号。

发送节点发送的唤醒信号:

接收节点检测的唤醒信号:

14、主任务状态机模型

15、从任务状态机模型

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容