参考链接
希尔排序是1959年由 D.L.Shell 提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序。
基本思想:
- 先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,
- 然后依次缩减增量再进行排序,
- 待整个序列中的元素基本有序(增量足够小dk=)时,再对全体元素进行一次直接插入排序。
- 因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。
以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例
第一次 gap = 10 / 2 = 5
49 38 65 97 26 13 27 49 55 4
1A 1B
2A 2B
3A 3B
4A 4B
5A 5B
1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49) (97, 55) (26, 4)这样每组排序后就变成了(13, 49) (27, 38) (49, 65) (55, 97) (4, 26),下同。
第二次 gap = 5 / 2 = 2
排序后
13 27 49 55 4 49 38 65 97 26
1A 1B 1C 1D 1E
2A 2B 2C 2D 2E
第三次 gap = 2 / 2 = 1
4 26 13 27 38 49 49 55 97 65
1A 1B 1C 1D 1E 1F 1G 1H 1I 1J
第四次 gap = 1 / 2 = 0 排序完成得到数组:
4 13 26 27 38 49 49 55 65 97
算法的实现:
我们简单处理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n为要排序数的个数即:
- 先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.
- 对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。
- 继续不断缩小增量直至为1,
- 最后使用直接插入排序完成排序。
extension Array where Element: Comparable {
mutating func shellSort() {
var gap = count / 2
while gap > 0 {
var i = gap
while i < count {
let insertValue = self[i]
var prevIndex = i - gap
/// 对i-gap, i,i+gap,i+gap+gap进行插入排序
while prevIndex >= 0, insertValue < self[prevIndex] {
swapAt(prevIndex + gap, prevIndex)
prevIndex -= gap
}
i += 1
}
gap /= 2
}
}
}