机器学习面试001—支持向量机SVM

1. 关于min和max交换位置满足的 d* <= p* 的条件并不是KKT条件

Ans:这里并非是KKT条件,要让等号成立需要满足strong duality(强对偶),之后有学者在强对偶下提出了KKT条件。KKT条件成立需要满足constraint qualifications,而constraint qualifications之一就是Slater条件——即:凸优化问题,如果存在一个点x,使得所有等式约束都成立(即取严格不等号,不包括等号),则满足Slater条件。SVM中此处,满足Slater条件,等号可以成立

2. 核函数是从高维空间构造超平面,是否会带来高维计算代价的问题?

Ans:并不会。在线性不可分的情况下,SVM首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维特征空间,最终在高纬度空间中构造出最优分离超平面。

3. 高斯核函数在方差参数δ上选取有什么影响?

Ans:如果δ选的很大,高次特征上的权重会衰减的非常快,此时相当于一个低维度的子空间;如果δ选的很小,则可以将任意的数据映射为线性可烦,但可能带来非常严重的过拟合问题。

4. 核函数的本质是什么?

Ans:①解决线性不可分问题 ②在低维上先进行计算,将实质的分类效果在高维上呈现,巧妙地避免了高维计算复杂性的问题。

5. 在目标函数中,拉格朗日的参数α的取值有什么特点?

image
image

Ans:对于远离平面的点为0;在边缘线的值在 [0, 1/N]之间;对于outlier数据的值为1/N

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容

  • 【概述】 SVM训练分类器的方法是寻找到超平面,使正负样本在超平面的两侧(分类正确性即“分得开”),且样本到超平面...
    sealaes阅读 11,046评论 0 7
  • 二、核函数 上一节我们说到,在引入对偶问题与KKT条件以后,此时的w为 于是此时的模型从wx+b转换成了另一个形式...
    小碧小琳阅读 745评论 0 1
  • 本文主要是学习支持向量机的算法原理,并且用Python来实现相关算法。内容包括:SVM概述、线性可分支持向量机、线...
    keepStriving阅读 16,720评论 6 57
  • 本章涉及到的知识点清单:1、决策面方程2、函数间隔和几何间隔3、不等式约束条件4、SVM最优化模型的数学描述(凸二...
    PrivateEye_zzy阅读 13,215评论 3 10
  • 坐在桌前,向左望出去,正好从阳台上望到那边的山。山在西边,山在那里。 隔壁寝室开玩笑的和我们说,我们住的是山景房。...
    月亮咩咩阅读 370评论 0 0