求最大二叉搜索子树大小
面试题
给定一棵二叉树的头节点head,
返回这颗二叉树中最大的二叉搜索子树的大小
思考
任意一棵树求它的最大二叉搜索子树大小
先考虑这棵树本身是不是二叉搜索树?
1)不是:
1.1)左边右边的二叉树搜索子树最大值
2)是:
2.1)那么最大值就是所有节点
判断一棵树是不是二叉搜索树需要信息有,左右树是不是BST,左树最大值是不是小于等于头值,右树最小值是不是大于等于头值。
信息合集
1)子树的节点数
2)子树是不是二叉搜索树
3)子树的最大值和最小值
4)子树的最大二叉搜索树大小
代码实现
public class Code04_MaxSubBSTSize {
public static class Node {
private int value;
private Node left;
private Node right;
public Node(int value) {
this.value = value;
}
}
//for test
//暴力法:直接找到最大的搜索子树,判断一棵树是不是搜索二叉树直接将中序序列放到list中,然后看这个list是不是升序
public static int getMaxSubBSTSize1(Node head) {
if (head == null) return 0;
return process1(head);
}
//当前树若是搜索二叉树,那最大的肯定是当前树,不然就得找找看左右树谁的大、
//返回最大搜索二叉子树
public static int process1(Node head) {
if (head == null) return 0;
int headBSTSize = getBSTSize(head);
if (headBSTSize != 0) return headBSTSize;
int size = Math.max(process1(head.left), process1(head.right));
return size;
}
public static int getBSTSize(Node head) {
if (head == null) return 0;
ArrayList<Node> list = new ArrayList<>();
in(head, list);
for (int i = 0; i < list.size() - 1; i++) {
if (list.get(i).value > list.get(i + 1).value) return 0;
}
return list.size();
}
private static void in(Node head, ArrayList<Node> list) {
if (head == null) return;
in(head.left, list);
list.add(head);
in(head.right, list);
}
//套路法:
public static int getMaxSubBSTSize2(Node head) {
if (head == null) return 0;
return process2(head).maxSubBSTSize;
}
private static Info process2(Node head) {
//n==1
if (head == null) return null;
//n==m
Info leftInfo = process2(head.left);
Info rightInfo = process2(head.right);
//n==m+1,加工
int nodes = (leftInfo == null ? 0 : leftInfo.nodes) + (rightInfo == null ? 0 : rightInfo.nodes) + 1;
boolean isBST = ((leftInfo == null || (leftInfo.isBST && leftInfo.max <= head.value)) && (rightInfo == null || (rightInfo.isBST && rightInfo.min >= head.value)));
int max = Math.max(
Math.max(
leftInfo == null ? Integer.MIN_VALUE : leftInfo.max,
rightInfo == null ? Integer.MIN_VALUE : rightInfo.max
),
head.value
);
int min = Math.min(Math.min(leftInfo == null ? Integer.MAX_VALUE : leftInfo.min, rightInfo == null ? Integer.MAX_VALUE : rightInfo.min), head.value);
int maxSubBSTSize = isBST ? nodes : Math.max(leftInfo == null ? Integer.MIN_VALUE : leftInfo.maxSubBSTSize, rightInfo == null ? Integer.MIN_VALUE : rightInfo.maxSubBSTSize);
return new Info(nodes, isBST, max, min, maxSubBSTSize);
}
public static class Info {
private int nodes;
private boolean isBST;
private int max;
private int min;
private int maxSubBSTSize;
public Info(int nodes, boolean isBST, int max, int min, int maxSubSize) {
this.nodes = nodes;
this.isBST = isBST;
this.max = max;
this.min = min;
this.maxSubBSTSize = maxSubSize;
}
}
//for test
public static Node generalRandomTree(int maxFloor, int maxValue) {
return pre(maxFloor, maxValue, 1);
}
//for test
private static Node pre(int maxFloor, int maxValue, int curFloor) {
if (curFloor > maxFloor || Math.random() < 0.35) return null;
Node head = new Node((int) (Math.random() * maxValue));
head.left = pre(maxFloor, maxValue, curFloor + 1);
head.right = pre(maxFloor, maxValue, curFloor + 1);
return head;
}
public static void main(String[] args) {
int maxFloor = 4, maxValue = 100, testTimes = 1000000;
int i = 0;
for (; i < testTimes; i++) {
Node head = generalRandomTree(maxFloor, maxValue);
if (getMaxSubBSTSize1(head) != getMaxSubBSTSize2(head)) break;
}
Logger.getGlobal().info(i == testTimes ? "finish!!!" : "oops!!!");
}
}
对数器真是个好东西,就随便写,用你一想就想得到的暴力法最快写出来就行。这道题可以不用子树传节点数回来,先判断当前这棵树是不是二叉搜索树,然后若是的话那么子树肯定都是二叉搜索树,那个时候它们的maxSubBSTSize就是它树的节点数。