2019-02-24

多元线性回归(Multiple Linear Regression)

第1步:数据预处理

导入库

import pandas as pd
import numpy as np

导入数据集

dataset = pd.read_csv('../datasets/50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : ,  4 ].values
print(dataset.head())
print(X[:10])
print(Y)
   R&D Spend  Administration  Marketing Spend       State     Profit
0  165349.20       136897.80        471784.10    New York  192261.83
1  162597.70       151377.59        443898.53  California  191792.06
2  153441.51       101145.55        407934.54     Florida  191050.39
3  144372.41       118671.85        383199.62    New York  182901.99
4  142107.34        91391.77        366168.42     Florida  166187.94
[[165349.2 136897.8 471784.1 'New York']
 [162597.7 151377.59 443898.53 'California']
 [153441.51 101145.55 407934.54 'Florida']
 [144372.41 118671.85 383199.62 'New York']
 [142107.34 91391.77 366168.42 'Florida']
 [131876.9 99814.71 362861.36 'New York']
 [134615.46 147198.87 127716.82 'California']
 [130298.13 145530.06 323876.68 'Florida']
 [120542.52 148718.95 311613.29 'New York']
 [123334.88 108679.17 304981.62 'California']]
[192261.83 191792.06 191050.39 182901.99 166187.94 156991.12 156122.51
 155752.6  152211.77 149759.96 146121.95 144259.4  141585.52 134307.35
 132602.65 129917.04 126992.93 125370.37 124266.9  122776.86 118474.03
 111313.02 110352.25 108733.99 108552.04 107404.34 105733.54 105008.31
 103282.38 101004.64  99937.59  97483.56  97427.84  96778.92  96712.8
  96479.51  90708.19  89949.14  81229.06  81005.76  78239.91  77798.83
  71498.49  69758.98  65200.33  64926.08  49490.75  42559.73  35673.41
  14681.4 ]

将类别数据数字化

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
#州 进行 label化
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
print("labelencoder:")
print(X[:10])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
print("onehot:")
print(X[:10])
labelencoder:
[[165349.2 136897.8 471784.1 2]
 [162597.7 151377.59 443898.53 0]
 [153441.51 101145.55 407934.54 1]
 [144372.41 118671.85 383199.62 2]
 [142107.34 91391.77 366168.42 1]
 [131876.9 99814.71 362861.36 2]
 [134615.46 147198.87 127716.82 0]
 [130298.13 145530.06 323876.68 1]
 [120542.52 148718.95 311613.29 2]
 [123334.88 108679.17 304981.62 0]]
onehot:
[[0.0000000e+00 0.0000000e+00 1.0000000e+00 1.6534920e+05 1.3689780e+05
  4.7178410e+05]
 [1.0000000e+00 0.0000000e+00 0.0000000e+00 1.6259770e+05 1.5137759e+05
  4.4389853e+05]
 [0.0000000e+00 1.0000000e+00 0.0000000e+00 1.5344151e+05 1.0114555e+05
  4.0793454e+05]
 [0.0000000e+00 0.0000000e+00 1.0000000e+00 1.4437241e+05 1.1867185e+05
  3.8319962e+05]
 [0.0000000e+00 1.0000000e+00 0.0000000e+00 1.4210734e+05 9.1391770e+04
  3.6616842e+05]
 [0.0000000e+00 0.0000000e+00 1.0000000e+00 1.3187690e+05 9.9814710e+04
  3.6286136e+05]
 [1.0000000e+00 0.0000000e+00 0.0000000e+00 1.3461546e+05 1.4719887e+05
  1.2771682e+05]
 [0.0000000e+00 1.0000000e+00 0.0000000e+00 1.3029813e+05 1.4553006e+05
  3.2387668e+05]
 [0.0000000e+00 0.0000000e+00 1.0000000e+00 1.2054252e+05 1.4871895e+05
  3.1161329e+05]
 [1.0000000e+00 0.0000000e+00 0.0000000e+00 1.2333488e+05 1.0867917e+05
  3.0498162e+05]]

躲避虚拟变量陷阱

在回归预测中我们需要所有的数据都是numeric的,但是会有一些非numeric的数据,比如国家,省,部门,性别。这时候我们需要设置虚拟变量(Dummy variable)。做法是将此变量中的每一个值,衍生成为新的变量,是设为1,否设为0.举个例子,“性别”这个变量,我们可以虚拟出“男”和”女”两虚拟变量,男性的话“男”值为1,”女”值为,;女性的话“男”值为0,”女”值为1。

但是要注意,这时候虚拟变量陷阱就出现了。就拿性别来说,其实一个虚拟变量就够了,比如 1 的时候是“男”, 0 的时候是”非男”,即为女。如果设置两个虚拟变量“男”和“女”,语义上来说没有问题,可以理解,但是在回归预测中会多出一个变量,多出的这个变量将会对回归预测结果产生影响。一般来说,如果虚拟变量要比实际变量的种类少一个。

在多重线性回归中,变量不是越多越好,而是选择适合的变量。这样才会对结果准确预测。如果category类的特征都放进去,拟合的时候,所有权重的计算,都可以有两种方法实现,一种是提高某个category的w,一种是降低其他category的w,这两种效果是等效的,也就是发生了共线性,虚拟变量系数相加和为1,出现完全共线陷阱。

但是下面测试尽然和想法不一致。。。

X1 = X[: , 1:]

拆分数据集为训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
X1_train, X1_test, Y1_train, Y1_test = train_test_split(X1, Y, test_size = 0.2, random_state = 0)
print(X_test)
print("x",X_train)
print("y",Y_train)
​
print(Y_test)
print(X1_test)
print(Y1_test)

第2步:在训练集上训练多元线性回归模型

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
regressor1 = LinearRegression()
regressor1.fit(X1_train, Y1_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

第3步:在测试集上预测结果

y_pred = regressor.predict(X_test)
y1_pred = regressor1.predict(X1_test)
y_pred0 = regressor.predict(X_train)

print(y_pred)
print(y1_pred)
[103015.20159797 132582.27760815 132447.73845174  71976.09851258
 178537.48221055 116161.24230166  67851.69209676  98791.73374688
 113969.43533013 167921.0656955 ]
[103015.20159796 132582.27760816 132447.73845175  71976.09851259
 178537.48221054 116161.24230163  67851.69209676  98791.73374688
 113969.43533012 167921.0656955 ]

from matplotlib import pyplot
pyplot.plot(Y_train)
pyplot.plot(y_pred0)
pyplot.show()
pyplot.plot(Y_train)
pyplot.plot(regressor1.predict(X1_train))
pyplot.show()

​




# regression evaluation

from sklearn.metrics import r2_score
print(r2_score(Y_test,y_pred))
print(r2_score(Y1_test,y1_pred))

0.9347068473282218
0.9347068473282965

​```
从r2得分来看,好了一丢丢~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容