韦达定理

格瓦维达是法国杰出数学家,他年轻时是一名律师,后来出于爱好致力于数学。科学研究,他通过393416个边的多边形计算中。圆周率最早明确给出有关圆周率pi值的无穷运算是。还有很多发现,但最重要的是发现了方程根与系数的关系,为了纪念这个伟大的发现,人们把叙述一元二次方程根与系数关系的结论称为伟达定理好了,言归正传,那什么是伟达定理呢为了方便说明,我们用数学符号来表示,即对于一个一元二次方程,Ax方加BX加C等于0a不等于零,它的两根X1X2满足X1加X2等于负,A分之BXC乘X2等于a分之C。这也就是一元二次方程两根之和,X1加X22根之间,XD乘X2和系数ABC的关系。两根之间,XD乘X2和系数ABC的关系。当然,一元二次方程有根的条件必须满足判别式等。B方减CC大于当兵,这也是伟达定理必须要满足的条件那韦达定理存在的理论依据是什么呢很简单,求根公式都知道吧,即一元二次方程,Ax方加BX加C等于0a不等于零,两个根是X12等于2a分之负B加减高下,B方减C。那么两个之和就为X1加X2等于2X分之负B加根号下,B方减C,加上2F支付B减根号下,B方减C等于负的2/2B等于负的a分之B两根之积为X1乘X2等于2a分之负,B加根号下,B方减CC成二月份支付B减根号下,B方减C等于4a方分之B方减括号,B方减C等于4a方分之四ac等于a分之C。知道了伟达定理的由来,那么伟达定理该怎么应用呢?我们这节课一起来探讨一下吧

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容