快速上手关键词抽取的算法

前言

在自然语言处理领域,我们有一种类型的问题是如何在一堆文本中提取出核心词/句子。而无论是对于长文本还是短文本,往往几个关键词就可以代表整个文本的主题思想。同时,在很多推荐系统中,由于无法直接就整体文本进行利用,往往会现对文本进行汇总,常用的方法就是embedding或者关键词抽取,关键词提取的准确程度直接关系到推荐系统或者搜索系统的最终效果。让我们看下有哪些快速上手可用的方法。

TFIDF

TFIDF是term frequency inverse document frequency的简称,很好理解:term frequency dot inverse document frequency,文本频率与逆文档频率指数, TFIDF就是为了表征一个token(可以是一个字或者一个词)的重要程度。所以,当我们把doc中的每个词的重要程度算出来,倒序即可作为关键词。

Term Frequency

image

Inverse Document Frequency

image

分母+1是平衡未出现词

TF * IDF

TF-IDF算法非常容易理解,并且很容易实现,但是其简单结构并没有考虑词语的语义信息,无法处理一词多义与一义多词的情况。

实现

RAKE

RAKE是Rapid Automatic Keyword Extraction的简称,RAKE算法的亮点在于“R”,快速同时也有不俗的效果。

流程

  • 切句切词:切句是以标点+停顿词+分割词做标记,切词是借助第三方切词工具,我python版实现的时候用的是jieba,Java版实现的时候用的是HanNlp
  • 共现矩阵:构建共现矩阵
  • 特征提取:基于词的词频freq、度deg 以及度与频率之比deg/freq三个特征
  • 句的score:score = deg/freq
    • 建议通过句长进行平衡

实现

TextRank

知道PageRank的同学,一定知道这么一个道理,网页点击行为是一个有向图,重要的网页会被各种网页链接到,比如baidu,所以我们求出有向图中节点的重要性就是网页的重要性。TextRank其实思想类似,只是把有向图换成了无向图,所以公式大家就应该很熟悉,和PageRank类似:
image

其中,d依旧是阻尼系数,但是大家发现多了w,这个其实是节点之间边的权重,因为无向图,文本分词后的词汇跳转我们假设是相互等同的。

实现


以上的方法中,TFIDF只能对词进行提取,而RAKE和TextRank都可以抽词或者抽句。其实,以上方法都很简单,在数据量足够大的情况下,没有基于深度循环神经网络的算法效果好,但是强就强在易于上手,效果快速可见。

欢迎大家关注我的个人bolg知乎,更多代码内容欢迎follow我的个人Github,如果有任何算法、代码疑问都欢迎通过邮箱发消息给我。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容