[李宏毅机器学习]机器学习介绍

李宏毅机器学习系列文章目录

人工智能是人类长远以来的一个目标,而机器学习是实现这个目标的其中一种方法,深度学习则是机器学习的一种方法。

生物学知识告诉我们,生物的行为取决于两件事,一个是后天学习的结果,另外一个就是先天的本能

在没有机器学习之前,人们是通过赋予机器先天的本能的方式来实现人工智能的,即通过编写hand-crafted rules的方式,更简单的说法就是给机器编写一些设定好的规则,让机器根据设定好的规则实现智能。

而使用hand-crafted rules的缺点是:

  • Hard to consider all possibilities
  • 永远无法超越创造者
  • Lots off human efforts(not suitable for small industry)

以上缺点使得人们发明创造了machine learning的方法。

What is Machine Learning?

Machine Learning简单来说,就是你写一段具备学习能力的程序,这段程序并不是让机器具备做某些事情的能力(而是具备学习的能力),接下来可以像教小孩一样教会机器做某些事情。

image

Machine Learning所做的事情,其实就是寻找一个能解决问题的function(这个function过于复杂,人类无法直接写出),这个function的输入是使用者的input,输出则是机器的回应。

Machine Learning Framework

机器学习(监督学习,Supervised Learning)的整体框架大概如下:

左边的部分叫做training,就是学习的过程;右边的部分叫做testing,学好之后就可以拿去应用。

  • 我们需要有一个function set,称之为model,里面有非常多的function。

  • 通过一些训练数据,告诉机器一个好的function输入输出应该是怎样的,机器可以通过训练数据判断一个function是好还是不好。

  • 同时,需要一个有效率的算法从function set中挑选出“最好”的function,称为f*

  • 找到f*之后我们可以将它应用在一些场景中。

Machine Learning Framework整个过程分为3个步骤(进行了细节的简化):

  1. 找一个function
  2. 让machine可以衡量一个function好还是不好
  3. 让machine挑选出最好的function

Learning Map

本课程的Learning Map,其实也是机器学习的Learning Map。

  • scenario:学习的情景,通常这是我们无法控制的部分,采用什么方法其实主要取决于我们有什么样的data;
  • task:不同的问题,不同的task里面有不同的model;
  • method:解决问题的不同方法。

Task

机器学习的task可以分为几大类:

  • Regression:functin输出的是scalar(数值)

  • Classification:function输出的是类别

    • Binary Classification:Yes/No

    • Multi-class Classification:Class1, Class2, ...ClassN

  • Structured Learning:让机器输出结构性的东西。

Supervised Learning(监督学习)

监督学习需要大量的training data来告诉我们要找的function的input和output之间的关系,而这些output往往需要人工标注,称为label。因此监督学习的难点就在于收集大量有标签的训练数据。

Semi-supervised Learning(半监督学习)

半监督学习就能够减少label需要的量。

假如我们要做一个猫狗分类器,有少量猫和狗的labeled data,和大量猫和狗的unlabeled data,在半监督学习中,这些unlabeled data也是对学习有帮助的。

Transfer Learning(迁移学习)

另一种减少label的量的学习方法是迁移学习。

同样假设我们要做猫狗分类的问题,我们一样只有少量有label的data,但是我们还有大量的其他data,这些data可能有label也可能没有,而且这些data甚至跟我们要考虑的问题没什么特别的关系(并非猫狗),这些data能有什么帮助,这就是迁移学习要讲的问题。

Unsupervised Learing(无监督学习)

更加进阶的方法就是无监督学习,我们希望机器做到无师自通。让机器在没有任何label的情况下,只有输入,没有输出,看它到底能学到什么。

Reinforcement Learning(强化学习)

Supervised v.s. Reinforcement

  • Supervised:Learn from techer
  • Reinforcement:Learn from critics

在监督学习中,我们会告诉机器正确答案是什么,而在强化学习中,机器只能得到一个分数(结果),就是它做得好还是不好,但是不会告诉它那里正确哪里错误,它要自己反省检讨。监督学习更像学校中的学习,有一个老师告诉你正确的答案,而强化学习则更像真实社会的学习,没有人会告诉你正确的答案。

Alpha Go is supervised learning + reinforcement learning.

Why we need to learn Machine Learning?

AI有可能会取代大部分的工作,但是会出现一个新的工作,叫做AI训练师

AI训练师需要挑选合适的model,loss function,不同的mode和loss function适合解决不同的问题。同时,有些model的最佳化(find the best function)比较困难,因此也需要经验丰富的训练师。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容