storm基本概念

流式计算中,各个中间件产品对计算过程中的角色的抽象都不尽相同,实现方式也是千差万别。本文针对storm中间件在进行流式计算中的几个概念做个概括总结。

基本元素:

storm分布式计算结构称为topology(拓扑)由stream,spout,bolt组成。


spout代表一个storm拓扑中的数据入口,连接到数据源,将数据转化为一个个tuple,并发射tuple

stream是由无限制个tuple组成的序列。tuple为storm的核心数据结构,是包含了一个或多个键值对的列表。

bolt可以理解为计算程序中的运算或者函数,bolt的上游是输入流,经过bolt实施运算后,可输出一个或者多个输出流。

bolt可以订阅多个由spout或者其他bolt发射的数据流,用以构建复杂的数据流转换网络。


上述即为storm最基本的组成元素,无论storm如何运行,都是以stream,spout,bolt做为最基本的运行单元。而这三者则是共同构成了一个storm拓扑topology。

storm集群组成部分:

首先需要明确一个概念,bolt,spout实例,都属于任务,spout产生数据流,并发射,bolt消费数据流,进行计算,并进行落地或再发射,他们的存在以及运行过程都需要消耗资源,而storm集群是一个提供了资源的集群,我们要做的就是将spout/boult实例合理分配到storm集群提供的计算资源上,这样就可以让spout/bolt得以执行。


worker为JVM进程,一个topology会分配到一个或者多个worker上运行。

executor是worker内的java线程,是具体执行bolt/spout实例用的。下篇文章在介绍如何提供storm并行计算能力时会介绍worker以及executor的配置。

在storm中,worker是由supervisor进程创建,并进行监控的。storm集群遵循主从模式,主为nimbus,从为supervisor,storm集群由一个主节点(确实有单点问题),和多个工作节点(supervisor)组成,并使用zookeeper来协调集群中的状态信息,比如任务分配情况,worker状态,supervisor的拓扑度量。


通过配置可指定supervisor上可运行多少worker。一个worker代表一个slot。

nimbus守护进程的主要职责是管理,协调和监控在集群上运行的topology.包括topology的发布,任务指派,事件处理失败时重新指派任务。

supervisor守护进程等待nimbus分配任务后生成并监控workers执行任务。supervosior和worker都是运行在不同的JVM进程上。


了解了集群模式下,storm大致的分布概念,下面结合笔者做的一个实例,了解一下如何发布计算资源到storm集群上。

注:本文不花费大量篇章在代码实现说明上,读者主要着重概念。


笔者定义了一个spout,两个bolt 运算过程如下:


其中streamMaking是一个不断生成随机数(5~30)的spout实例,Step1Bolt会过滤掉15以下的随机数(过滤),15以上的随机数会乘以16(计算),再将结果向后发射。Step2Bolt订阅Step1Bolt发射的数据,接收数据后,打印输出。流程结束。

笔者在定义spout/bolt实例时,配置了spout,bolt的并行执行数。其中

streamMaking:4   Step1Bolt:2  Step2Bolt 1

这样,发布成功后,storm会根据我的配置,分配足够的计算资源给予spout/bolt进行执行。

发布:

发布时,spout和bolt都是在一起以jar的形式发布到nimbus上的,分配后,内部定义的spout和bolt将以组件的形式被nimbus分配至worker进程中执行。

其中worker都是由supervisor创建的,创建出来的worker进程与supervisor是分开的不同进程。一个supervisor可创建多少worker可通过修改storm安装目录下的storm.yaml进行配置。


上述配置中,指明了该supervisor最多可生成6个worker,每一个worker将使用其中一个端口。

task是执行的最小单元。spout/bolt实例在定义中指定了,要起多少task,以及多少executor。也即一个topology发布之前已经定义了task总量,和需要多少资源来执行我的task总量。nimbus将根据已有的计算资源进行分配。

下图中:  nimbus左边代表着计算任务量,和所需计算配置

nimbus右边代表着计算资源

nimbus将根据计算资源信息,合理的分发计算任务量。


发布成功后,通过storm自带的UI功能,可以查看你发布的topology运行以及其中每个组件的分布执行情况。



监控图像中清晰的显示了,目前部署的topology,以及topology中每个组件所分配的计算资源所在host,以及每个组件发射了多少tuple,接收了多少tuple,以及有多少个executor在并行执行。

本文讲述了storm内的基本元素以及基本概念,后续将讲述storm的重点配置信息,以及如何提高并发计算能力,窗口概念等高级特性,后续会进行源码分析,以及与其他实时计算中间件的比较。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 目录 场景假设 调优步骤和方法 Storm 的部分特性 Storm 并行度 Storm 消息机制 Storm UI...
    mtide阅读 17,022评论 30 60
  • 本文主要介绍storm中的基本概念,从基础上了解strom的体系结构,便于后续编程过程中作为基础指导。主要的概念包...
    看山远兮阅读 1,501评论 0 9
  • Storm 系统中包含以下几个基本概念:拓扑(Topologies)流(Streams)数据源(Spouts)数据...
    发光的鱼阅读 825评论 0 0
  • Date: Nov 17-24, 2017 1. 目的 积累Storm为主的流式大数据处理平台对实时数据处理的相关...
    一只很努力爬树的猫阅读 2,156评论 0 4
  • 【每日一言·德育】 德育与艺体结合,我认为首先是艺体学科德育目标落实的问题;其次是艺体活动中进一步锤练,以及展示学...
    小小宇哥阅读 579评论 0 0