垃圾回收机制(下)你真的懂了吗?

1.1 如何进行垃圾回收

由于垃圾收集算法的实现涉及大量的程序细节,各家虚拟机厂商对其实现细节各不相同,因此本课时并不会过多的讨论算法的实现,只是介绍几种算法的思想以及优缺点。

1.1.1 标记清除算法(Mark and Sweep GC)

  • Mark 标记阶段:找到内存中的所有 GC Root 对象,只要是和 GC Root 对象直接或者间接相连则标记为灰色(也就是存活对象),否则标记为黑色(也就是垃圾对象)。
  • Sweep 清除阶段:当遍历完所有的 GC Root 之后,则将标记为垃圾的对象直接清除。
image
  • 优点:实现简单,不需要将对象进行移动。
  • 缺点:这个算法需要中断进程内其他组件的执行(stop the world),并且可能产生内存碎片,提高了垃圾回收的频率。

1.1.2 复制算法(Copying)

  • 复制算法之前,内存分为 A/B 两块,并且当前只使用内存 A,内存的状况如下图所示:


    image
  • 标记完之后,所有可达对象都被按次序复制到内存 B 中,并设置 B 为当前使用中的内存。内存状况如下图所示:

image
  • 优点:按顺序分配内存即可,实现简单、运行高效,不用考虑内存碎片。
  • 缺点:可用的内存大小缩小为原来的一半,对象存活率高时会频繁进行复制。

1.1.3 标记-压缩算法 (Mark-Compact)

  • Mark 标记阶段:找到内存中的所有 GC Root 对象,只要是和 GC Root 对象直接或者间接相连则标记为灰色(也就是存活对象),否则标记为黑色(也就是垃圾对象)。
  • Compact 压缩阶段:将剩余存活对象按顺序压缩到内存的某一端。
image
  • 优点:这种方法既避免了碎片的产生,又不需要两块相同的内存空间,因此,其性价比比较高。
  • 缺点:所谓压缩操作,仍需要进行局部对象移动,所以一定程度上还是降低了效率。

1.2 JVM分代回收策略

Java虚拟机根据对象存活的周期不同,把堆内存划分为几块,一般为新生代,老年代注意: 在 HotSpot 中除了新生代和老年代,还有永久代。

分代回收的中心思想就是:对于新创建的对象会在新生代中分配内存,次区域对象生命周期较短,多次回收不掉的就会转移大老年代中。

1.2.1 新生代

新生成的对象优先存放在新生代中,新生代对象朝生夕死,存活率很低,在新生代中,常规应用进行一次垃圾收集一般可以回收 70%~95% 的空间,回收效率很高。新生代中因为要进行一些复制操作,所以一般采用的 GC 回收算法是复制算法。

新生代又可以继续细分为 3 部分:Eden、Survivor0(简称 S0)、Survivor1(简称S1)。这 3 部分按照 8:1:1 的比例来划分新生代。这 3 块区域的内存分配过程如下:

绝大多数刚刚被创建的对象会存放在 Eden 区。如图所示:

image

当 Eden 区第一次满的时候,会进行垃圾回收。首先将 Eden区的垃圾对象回收清除,并将存活的对象复制到 S0,此时 S1是空的。如图所示:

image

下一次 Eden 区满时,再执行一次垃圾回收。此次会将 Eden和 S0区中所有垃圾对象清除,并将存活对象复制到 S1,此时 S0变为空。如图所示:

image

如此反复在 S0 和 S1之间切换几次(默认 15 次)之后,如果还有存活对象。说明这些对象的生命周期较长,则将它们转移到老年代中。如图所示:

image

1.2.2 老年代

一个对象如果在新生代存活了足够长的时间而没有被清理掉,则会被复制到老年代。老年代的内存大小一般比新生代大,能存放更多的对象。如果对象比较大(比如长字符串或者大数组),并且新生代的剩余空间不足,则这个大对象会直接被分配到老年代上。老年代因为对象的生命周期较长,不需要过多的复制操作,所以一般采用标记压缩的回收算法。

注意:对于老年代可能存在这么一种情况,老年代中的对象有时候会引用到新生代对象。这时如果要执行新生代 GC,则可能需要查询整个老年代上可能存在引用新生代的情况,这显然是低效的。所以,老年代中维护了一个 512 byte 的 card table,所有老年代对象引用新生代对象的信息都记录在这里。每当新生代发生 GC 时,只需要检查这个 card table 即可,大大提高了性能

1.3 引用

上文中已经介绍过,判断对象是否存活我们是通过GC Roots的引用可达性来判断的。但是JVM中的引用关系并不止一种,而是有四种,根据引用强度的由强到弱,他们分别是:强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)

image

平时项目中,尤其是Android项目,因为有大量的图像(Bitmap)对象,使用软引用的场景较多。所以重点看下软引用SoftReference的使用,不当的使用软引用有时也会导致系统异常。

1.3.1 引用软引用常规使用

  public class SoftReferenceDemo {
static class SoftObject {
    byte[] data = new byte[1*1200 * 1024 * 1024];//120M
}

public static void main(String[] args) throws InterruptedException{
    //将缓存数据用软引用持有
    SoftReference<SoftObject> cacheRef = new SoftReference<>(new SoftObject());
    System.out.println("第一次gc前 软引用" + cacheRef.get());
    //进行一次gc后查看对象的回收情况
    System.out.println("第一次gc后 软引用" + cacheRef.get());

    //再分配一个120M的对象 看看缓存对象的回收情况
    SoftObject newSo = new SoftObject();
    System.out.println("再分配120M强引用对象之后 软引用" + cacheRef.get());

}
}

执行:java -Xmx200m SoftReferenceDemo

运行结果:

第一次gc前 软引用com.example.leetcode.SoftReferenceDemoSoftObject@66d3c617 第一次gc后 软引用com.example.leetcode.SoftReferenceDemoSoftObject@66d3c617
再分配120M强引用对象之后 软引用
null

首先通过-Xmx将堆最大内存设置为200M。从日志中可以看出,当第一次GC时,内存中还有剩余可用内存,所以软引用并不会被GC回收。但是当我们再次创建一个120M的强引用时,JVM可用内存已经不够,所以会尝试将软引用给回收掉。

1.4 总结:

本课时着重讲解了 JVM 中有关垃圾回收的相关知识点,其中重点介绍了使用可达性分析来判断对象是否可以被回收,以及 3 种垃圾回收算法。

虚拟机垃圾回收机制很多时候都是影响系统性能、并发能力的主要因素之一。尤其是对于从事 Android 开发的工程师来说,有时候垃圾回收会很大程度上影响 UI 线程,并造成界面卡顿现象。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容