算法基础(I)-二分搜索算法、牛顿法

什么是算法?

算法的定义是完成一项任务的一系列步骤,就像一份食谱,第一步干什么,第二步干什么... 在计算机科学中,算法是完成一个任务的一系列步骤,对于完成一个任务,有好的算法也有坏的算法,找到一个优秀的算法可以让任务高效的完成。一个好的算法要满足两点正确性高效,但是有时候也不要去完全正确足够好就行,比如一项任务要得到一个完全正确结果需要非常长的时间。

找到立方根

给一个数n怎么找到它的立方根呢?我们知道无法找到随便一个数的精确立方根,所以我们可以接受一定误差。

我们可以让x从0开始不断的增加它的大小,看它的三次方有多接近n,找出最接近n的数。

def cuberoot(n):
    inc = 0.001 # 每次递增的数,越小精度越大
    eps = 0.01 # 可接受的误差范围
    ans = 0.0
    while abs(ans ** 3 - n) >= eps and ans < abs(n):
        ans += inc
    if n < 0: ans *= -1
    return ans

可以猜到当n很大时,这个算法需要的时间就非常长。那么有什么更好的算法?

二分搜索算法

二分搜索算法(binary search)也叫折半搜索,是一种在有序数组中查找某一特定元素的搜索算法。从数组的中间开始寻找,看是不是要找的数,如果不是就看这个数字是大于还是小于要找的数,然后把不对的那一半扔掉。这个算法每次都搜索范围缩小一半,所以是一个非常快的算法。

image

上面找到立方根问题用二分搜索算法解决就是这样,

def cuberoot(n):
    eps = 0.01
    low = 0.0 # 下界
    high = n # 上界
    ans = (low + high) / 2
    while abs(ans ** 3 - n) >= eps:
        if ans ** 3 < n:
            low = ans
        else:
            high = ans
        ans = (low + high) / 2
    if n < 0: ans *= -1
    return ans

对比原来的算法可以看到,二分搜索算法快多了,原来到迭代几千次,现在十几次就行了!但是还有没有更快的算法呢?

牛顿法

牛顿法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method)。简单来说牛顿法可以快速的找到任何多项式的根(不光是立方根)。比如我们要找到25的平方根,首先找到一个多项式p(x)=x^2-25满足p(r)=0,并对它求导得到p'(x)=2x,牛顿法告诉我们如果一个数g很接近它的根,那么g-\frac{p(g)}{p'(g)}就更加接近它的根。

def cuberoot(n):
    eps = 0.01
    g = n / 3 # 随便猜个数
    while abs(g ** 3 - n) >= eps:
        g = g - (g ** 3 - n) / (g ** 2 * 3)
    return g

可以看到代码很紧凑,但是非常快比二分搜索算法还要快!

大O符号

上面的方法都解决同一个问题,但是速度有快有慢,那么我们怎么描述一个算法的快慢?

  1. 我们需要根据输入大小确定算法需要多长时间。
  2. 我们必须知道函数随输入大小增长的速度。

大O符号(Big O notation),又称为渐进符号,是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。

大O符号描述一个算法在最坏情况下的复杂度。

比如有个累加函数

def add(n):
    ans = 0
    while n > 0:
        ans = ans + n
        n = n - 1
    return ans

可以看到这个函数一共要执行1+5n+1步,但是大O表示法只关心当n增大时占主导地位的项目,其他项目和系数都可以忽略。这个函数用大O符号就为O(n)是线性复杂度。

复杂度分类(从快到慢)

|符号|名称|
-|-|-
|O(1)|常数|
|O(log\ n)|对数|
|O((log\ n)^c)|多对数|
|O(n)|线性|
|O(n\ log\ n)|线性对数|
|O(n^c)|多项式|
|c^n|指数|
|n!|阶乘|

加法法则

O(f(n))+O(g(n))=O(f(n)+g(n))

比如一个函数内有两个不同复杂度的循环,O(n) + O(n^2) = O(n^2+n) = O(n^2)

乘法法则

O(f(n))*O(g(n))=O(f(n)*g(n))

比如循环嵌套循环,O(n) * O(n)=O(n^2)

其他表示符号

除了大O符号还有一些不常用的符号。

\Omega符号

\Omega符号(Big-Omega notation)的意思刚好和大O符号相反。大\Omega符号表示函数在增长到一定程度时总大于一个特定函数的常数倍。不提供上限,算法最少要花多少时间。

\Theta符号

\Theta符号(Big-Theta notation)是大O符号和大\Omega符号的结合。

比如一个算法最慢为an^2+n+10最快为bn^2+n+10,那么用大\Theta表示就为\Theta(n^2),大\Theta(n)和大O看起来差不多,但是它们表达的意思不一样,O(f(n))是表示随着n的增大函数实际增长率不会超过f(n)\Theta(f(n))是表示随着n的增大f(n)就非常接近函数实际增长率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容