我们前面讲过,线性排序算法的时间复杂度比较低,适用场景比较特殊。所以如果要写一个通用的排序函数,不能选择线性排序算法。
如果对小规模数据进行排序,可以选择时间复杂度是 O(n2) 的算法;如果对大规模数据进行排序,时间复杂度是 O(nlogn) 的算法更加高效。所以,为了兼顾任意规模数据的排序,一般都会首选时间复杂度是 O(nlogn) 的排序算法来实现排序函数。
时间复杂度是 O(nlogn) 的排序算法不止一个,我们已经讲过的有归并排序、快速排序,后面讲堆的时候我们还会讲到堆排序。堆排序和快速排序都有比较多的应用,比如 Java 语言采用堆排序实现排序函数,C 语言使用快速排序实现排序函数。
如何优化快速排序?
如果数据原来就是有序的或者接近有序的,每次分区点都选择最后一个数据,那快速排序算法就会变得非常糟糕,时间复杂度就会退化为 O(n2)。实际上,这种 O(n2) 时间复杂度出现的主要原因还是因为我们分区点选的不够合理。
最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多。
这里介绍两个比较常用、比较简单的分区算法,你可以直观地感受一下。
- 三数取中法
- 我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。
- 随机法
- 随机法就是每次从要排序的区间中,随机选择一个元素作为分区点。这种方法并不能保证每次分区点都选的比较好,但是从概率的角度来看,也不大可能会出现每次分区点都选的很差的情况,所以平均情况下,这样选的分区点是比较好的。时间复杂度退化为最糟糕的 O(n2) 的情况,出现的可能性不大。
举例分析排序函数
qsort() 会优先使用归并排序来排序输入数据,因为归并排序的空间复杂度是 O(n),所以对于小数据量的排序,比如 1KB、2KB 等,归并排序额外需要 1KB、2KB 的内存空间,这个问题不大。现在计算机的内存都挺大的,我们很多时候追求的是速度。还记得我们前面讲过的用空间换时间的技巧吗?这就是一个典型的应用。
要排序的数据量比较大的时候,qsort() 会改为用快速排序算法来排序。
qsort() 选择分区点的方法就是“三数取中法”。
qsort() 并不仅仅用到了归并排序和快速排序,它还用到了插入排序。在快速排序的过程中,当要排序的区间中,元素的个数小于等于 4 时,qsort() 就退化为插入排序,不再继续用递归来做快速排序,因为我们前面也讲过,在小规模数据面前,O(n2) 时间复杂度的算法并不一定比 O(nlogn) 的算法执行时间长。