内容审核:用python实现内容鉴黄

背景

随着网络监管越来越严格,UGC网站都需要针对用户生产的内容,进行审核。

目前大家一般是机器和人工审核的双重过滤。针对大型的UGC网站,如果全部人工审核是不现实的,需要花费大量的人工成本,所以机器审核尤其重要。

废话不多说,给大家介绍下怎么利用python进行鉴黄。

思路

下面给大家说明下图片审核的思路。

视频审核与图片审核是通用的。视频内容实则由音频内容、视频画面内容两个对象组成,视频画面内容的机器审核,业界目前常采用截取画面帧上传识别,最终复用的是图片识别通道对场景、人物、物品进行判断是否违规。

1、遍历图片每一个像素,进行颜色分区、并记录是否为肤色;

2、皮肤区域小于 3 个,不是色情;

3、如果皮肤区域与整个图像的比值小于 15%,那么不是色情图片;

4、如果最大皮肤区域小于总皮肤面积的 45%,不是色情图片;

5、皮肤区域数量超过 60个,不是色情图片;

6、其它情况为色情图片。

关键代码

# 分析区域

def _analyse_regions(self):

# 如果皮肤区域小于3个,不是色情

iflen(self.skin_regions) <3:

self.message ="Less than 3 skin regions ({_skin_regions_size})".format(

_skin_regions_size=len(self.skin_regions))

self.result = False

returnself.result

# 为皮肤区域排序

self.skin_regions = sorted(self.skin_regions, key=lambda s: len(s),

reverse=True)

# 计算皮肤总像素数

total_skin = float(sum([len(skin_region)forskin_regioninself.skin_regions]))

# 如果皮肤区域与整个图像的比值小于15%,那么不是色情图片

iftotal_skin /self.total_pixels *100<15:

self.message ="Total skin percentage lower than 15 ({:.2f})".format(total_skin /self.total_pixels *100)

self.result = False

returnself.result

# 如果最大皮肤区域小于总皮肤面积的45%,不是色情图片

iflen(self.skin_regions[0]) / total_skin *100<45:

self.message ="The biggest region contains less than 45 ({:.2f})".format(len(self.skin_regions[0]) / total_skin *100)

self.result = False

returnself.result

# 皮肤区域数量超过60个,不是色情图片

iflen(self.skin_regions) >60:

self.message ="More than 60 skin regions ({})".format(len(self.skin_regions))

self.result = False

returnself.result

# 其它情况为色情图片

self.message ="色情图片"

self.result = True

returnself.result

运行效果

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容