AI_Challenger_2018农作物病害检测

1 tf.truncated_normal()

tf.truncated_normal(shape, mean, stddev)
shape表示生成张量的维度,mean是均值,stddev是标准差。
这个函数产生正态分布,均值和标准差自己设定。这是一个截断的(truncated)产生正态分布的函数。
举例,当输入参数mean = 0 , stddev =1时,
使用tf.truncated_normal的输出是不可能出现[-2,2]以外的点的,
而如果shape够大的话,tf.random_normal却会产生2.2或者2.4之类的输出。

2 tf.Variable()

tf.Variable(initializer,name),参数initializer是初始化参数,name是可自定义的变量名称.

import tensorflow as tf

v1=tf.Variable(tf.random_normal(shape=[4,3],mean=0,stddev=1),name='v1')
v2=tf.Variable(tf.constant(2),name='v2')
v3=tf.Variable(tf.ones([4,3]),name='v3')
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(v1))
    print(sess.run(v2))
    print(sess.run(v3))
##################################
结果为:
[[-1.2115501   1.0484737   0.55210656]
 [-1.5301195   0.9060654  -2.6766613 ]
 [ 0.27101386 -0.32336152  0.44544214]
 [-0.0120788  -0.3409422  -0.48505628]]
2
[[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]

3 tf中变量的定义与初始化

在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。想要将所有图变量进行集体初始化时应该使用tf.
global_variables_initializer。

import tensorflow as tf
import numpy as np

# 生成0和1矩阵
v1 = tf.Variable(tf.zeros([3, 3, 3]), name="v1")
v2 = tf.Variable(tf.ones([10, 5]), name="v2")
# 填充单值矩阵
v3 = tf.Variable(tf.fill([2, 3], 9))
# 常量矩阵
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7])
v4_2 = tf.constant(-1.0, shape=[2, 3])
# 生成等差数列
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")  # float32 or float64
v7_1 = tf.range(10, 20, 3)  # just int32
# 生成各种随机数据矩阵
v8_1 = tf.Variable(tf.random_uniform([2, 4], minval=0.0,
   maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1"))#均匀分布
v8_2 = tf.Variable(tf.random_normal([2, 3], mean=0.0,
   stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2"))#随机正态分布
v8_3 = tf.Variable(tf.truncated_normal([2, 3], mean=0.0, 
  stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3"))#截断正态分布
v8_4 = tf.Variable(tf.random_uniform([2, 3], minval=0.0, 
  maxval=1.0, dtype=tf.float32, seed=1234, name="v8_4"))
v8_5 = tf.random_shuffle([[1, 2, 3], [4, 5, 6], [6, 6, 6]], seed=134, 
  name="v8_5")

# 初始化
init_op = tf.initialize_all_variables()
# 保存变量,也可以指定保存的内容
saver = tf.train.Saver()
# saver = tf.train.Saver({"my_v2": v2})

# 运行
with tf.Session() as sess:
    sess.run(init_op)
    # 输出形状和值
    print(tf.Variable.get_shape(v1))# shape
    print(sess.run(v1))# vaule
    # numpy保存文件
    np.save("v1.npy", sess.run(v1))  # numpy save v1 as file
    test_a = np.load("v1.npy")
    print(test_a[1, 2])
    # 一些输出
    print(sess.run(v3))
    v5 = tf.zeros_like(sess.run(v1))
    print(sess.run(v6_1))
    print(sess.run(v7_1))
    print(sess.run(v8_5))
    # 保存图的变量
    save_path = saver.save(sess, "/tmp/model.ckpt")
    # 加载图的变量
    # saver.restore(sess, "/tmp/model.ckpt")
    print("Model saved in file: ", save_path)

4 tf.nn.conv2d

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None),是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要:
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一
第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容