SRGAN-超分辨率重建GAN

        SRGAN是2017年CVPR中备受关注的超分辨率论文,把超分辨率的效果带到了一个新的高度。所谓超分辨率重建就是将低分辨率的图像恢复成对应的高分辨率图像。由于地分辨率图像存在大量的信息缺失,这是一个病态的求逆解问题,尤其在恢复高倍分辨率图像的时候。传统方法通过加入一些先验信息来恢复高分辨率图像,如,插值法、稀疏学习、还有基于回归方法的随机森林等,CNN在超分辨率问题上取得了非常好的效果。

        SRGAN是基于CNN采用GAN方法进行训练来实现图像的超分辨率重建的。它包含一个生成器和一个判别器,判别器的主体是VGG19,生成器的主体是一连串的Residual block,同时在模型的后部加入了subpixel模块,借鉴了Shi et al 的Subpixel Network的思想,让图片在最后的网络层才增加分辨率,使得提升分别率的同时减少了计算量。论文中给出的网络结构如图所示:

图片来自于论文Photo-Realistic Single Image Super-Resolution Using a Generative AdversarialNetwork

论文中还给出了生成器和判别器的损失函数的形式:

1.生成器的损失函数为:  

   \hat{\theta}_{G}=argmin _{\theta_{G}}\frac{1}{N}\sum_{n=1}^N l^{SR} (G_{\theta_{G}}(I_{n}^{LR} ) , I_{n}^{HR})   

其中,l^{SR} ( )为本文所提出的感知损失函数,l^{SR}=l_{VGG}^{SR} +10^{-3}l_{Gen}^{SR}

内容损失l_{VGG}^{SR} = \frac{1}{WH} \sum_{x=1}^W\sum_{y=1}^H (\phi (I^{HR} )_{x,y}  - \phi (G_{\theta _{G} } (I^{LR} ))_{x,y})^2 ;   训练网络时使用均方差损失可以获得较高的峰值信噪比,一般的超分辨率重建方法中,内容损失都选择使用生成图像和目标图像的均方差损失(MSELoss),但是使用均方差损失恢复的图像会丢失很多高频细节。因此,本文先将生成图像和目标图像分别输入到VGG网络中,然后对他们经过VGG后得到的feature map求欧式距离,并将其作为VGG loss。

对抗损失l_{Gen}^{SR} = \sum_{n=1}^N (-log D_{\theta _{D} }(G_{\theta _G}(I^{LR} )) ); 为了避免当判别器训练较好时生成器出现梯度消失,本文将生成器的损失函数 l_{Gen}^{SR} = \sum_{n=1}^N log (1-D_{\theta _{D} }(G_{\theta _G}(I^{LR} )) ) 进行了修改。

gen_hr = generator(img_lr)     ## img_lr 为输入的地分辨率图像

Loss_GAN = torch.BCELoss(discriminator(gen_hr), valid)     ##  gen_hr 为生成的高分辨率图像

gen_features = VGG_feature_extract(gen_hr)

real_features = VGG_feature_extract(img_hr)     ## img_hr 为输入的目标高分辨率图像

Loss_content = torch.nn.L2Loss(gen_feature, real_feature)

Loss_G = Loss_content + 1e-3 * Loss_GAN


2.判别器的损失函数为:

\hat{\theta } _{D}  = E_{p(I^{HR} )} [log D_{\theta _{D} }(I^{LR} )]+   E_{q(I^{LR} )} [log (1-D_{\theta _{D} }(G_{\theta _G}(I^{LR} )) )]

与普通的生成对抗网络判别器的的损失函数类似。

Loss_real = torch.BCELoss(disciminator(img_hr), valid)

Loss_fake = torch.BCELoss(discriminator(generator(gen_hr)), fake)

Loss_D = (Loss_real + Loss_fake) / 2

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352