1.2 Mathematics Reviews

This section lists some of the basic formulas you need to memorize or be able to derive and reviews basic proof techniques.

这节列出一些你需要记住的一些基本的公式或者能够推倒出来并且复习一些证明技巧

1.2.1 Exponents(指数)


image.png

1.2.2 Logarithms(对数)
In computer science,all logarithms are to the base 2 unless specified otherwise

在计算机科学中,所有的对数都是以2为底的,除非另外指定

Definition 1.1

X^{A}=B if and only if log_X{B}=A
Several convenient equalities follow from this definition.

Theorem 1.1

log_A{B}=\frac{log_C{B}}{log_C{A}};A,B,C>0,A≠1

Proff

Let X=log_C{B},Y=log_C{A} and Z=log_A{B}.Then by definition of logarithms ,C^X=B,C^Y=A,and A^Z=B.Combining these three equalities yields C^X=B=(C^Y)^Z.Therefore ,X=YZ,which implies Z=X/Y,proving the theorem

Theorem1.2

log{AB}=log{A}+log{B};A,B>0

Proff

Let X=log{A},Y=log{B},and Z=log{AB}.Then,assuming the default base of 2,2^X=A,2^Y=B, and 2^Z=AB.Combining the last thress equalities yields 2^X2^Y=AB=2^Z.Therefore X+Y=Z,which proves the theorem.
Some other useful formulas,which can all be derived in a similar manner,follow.
log{A/B}=log{A}-log{B}
log({A^B})=Blog{A}
                             log{X}<X for all X>0

log{1}=0,log{2}=1,log{1024}=10,log{1048576}=20

1.2.3 Series

The easiest formulas to remember are
\sum_{i=1}^{N} {2^{N+1}}-1
and the companion,
\sum_{i=0}^{N}{\frac{A^{N+1}-1}{A-1}}
In the later formula,if 0<A<1,then
\sum_{i=0}^{N}{A^i}≤\frac{1}{1-A}
and as N tends to \infty,the sum approaches \frac{1}{1-A}.These are the 'geometric series' formulas.

We can derive the last formula for \sum_{i=0}^{N}{A^i}(0<A<1) in the following manner.Let S be the sum.Then
S=1+A+A^2+A^3+A^4+A^5+...
Then
AS=A+A^2+A^3+A^4+A^5+...
If we subtract these two equations (which is permissible only for a convergent series)
virtually all the terms on the right side cancel,leaving
S-AS=1
which implies that
S=\frac{1}{1-A}
we can use the same technique to compute \sum_{i=1}^{\infty}{\frac{i}{2^i}},a sum that occurs frequently.We write
S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...
and multiply by 2,obtaining
2S=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+\frac{6}{2^5}+...
Substracting these two equations yields
S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+...
Thus S=2
Another type of common series in analysis is the arithmetic series.Any such series can be evaluated from the basic formula.
\sum_{i=1}^{N}{i}=\frac{N(N+1)}{2}≈N^2/2

For instance,to find the sum 2+5+8+...+(3k-1),rewrite it as 3(1+2+3+...+k)-(1+1+1+...+1),which is clearly {3k(k+1)}/2-k.Another way to remember this is to add the first and last terms(total 3k+1),the second and the next to last terms(total 3k+1),and so on.Since there are k/2 of these paris,the total sum is k(3k+1)/2,which is the same answer as before.
  The next two formulas pop up now and then but are fairly uncommon.
\sum_{i=1}^{N}{i^2}=\frac{N(N+1)(2N+1)}{6}≈\frac{N^3}{3}
\sum_{i=1}^{N}{i^k}≈\frac{N^(k+1)}{|k+1|},k≠-1
 when k=-1,the latter formula is not valid.We then need the following formula,which is used far more in computer science than in other mathematical disciplines.The number H_N are known as the harmonic numbers,and the sum is known as a harmonic sum.The error in the following approximation tends to \gamma≈0.57721566,which is known as Euler's Constant.
H_N=\sum_{i=1}^{N}{\frac{1}{i}}≈log_{e}{N}
These two formulas are just general algebraic manipulations.
\sum_{i=1}^{N}{f(N)}=Nf(N)
\sum_{i=n_0}^{N}{f(i)}=\sum_{i=1}^{N}{f(i)-\sum_{i=1}^{n_0-1}{f(i)}}

1.2.4 Modular Arithmetic
We say that A is congruent to B modulo N,written A\equiv B(mod \space N),if N divides A-B.Intuitively,this means that the remainder is the same when either A or B is divided by N,Thus ,81\equiv61\equiv1(mod\space10),As with equality, if A\equiv B(mod\space N),then A+C\equiv B+C(mod\space N) and AD\equiv BD(mod\space N).

Often,N is a prime number.In that case,there are three important theorems.
 First ,if N is prime,then ab\equiv 0(mod\space N)is true if and only if a\equiv0(mod\space N) or b\equiv0(mod\space N).In other words,if a prime number N divides a product of two numbers.it divides at least one of the two numbers.

 Second,if N is prime,then the equation ax\equiv1(mod\space N) has a unique solution(mod N),for all 0<a<N,This solution 0<x<N,is the multiplicative inverse.

 Third,if N is prime,then the equation x^2\equiv a (mod\space N) has either two solutions(mod N),for all 0<a<N,or no solutions.

There are many theorems that apply to modular arithmetic ,and some of them require extraordinary proofs in number theory.We will use modular arithmetic sparingly,and the preceding theorems will suffice.

1.2.5 The P Word

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 12,196评论 0 10
  • 无论如何不要重复你的意思,不要用哲学式的循环叠加论证习惯,因为hr根本没心情听你讲那么多,除了第一句中心观点其他都...
    SeniaCheng阅读 4,216评论 0 0
  • 一、引言 数据的序列化在Android开发中占据着重要的地位,无论是在进程间通信、本地数据存储又或者是网络数据传输...
    CQ_TYL阅读 4,544评论 0 0
  • 原则:从身边的头部做起。 不要想太远,从身边头部开始。如果你在一个小团队里,那么就先占领团队的头部;如果你是...
    D051飞鹰阅读 1,715评论 0 0
  • 今天一整天都和学妹在一起。聊聊过往,说说近况,偶尔抒发下心情,一天就这么打发了。合影发在朋友圈表示好心情。到家,妈...
    微00阅读 1,283评论 2 2

友情链接更多精彩内容