关联规则之Apriori算法

Apriori算法的主要思想是找出存在于事物数据集中的最大频繁项集,再利用得到的最大频繁项集与预先设定的最小置信度阈值生成强关联规则。

频繁项集:

项集是项的集合。包含k个项的项集成为k项集。项集的出现频率是所有包含项集的事务计数,又称为绝对支持度或支持度计数。如果项集I的相对支持度满足预定义的最小支持度阈值,则I是频繁项集。频繁k项集通常记作k。

支持度:

项集A、B同时发生的概率称为关联规则的支持度(也称为相对支持度)。

置信度:

项集A发生,则项集B发生的概率为关联规则的置信度。

最小支持度和最小置信度:

最小支持度是用户或专家定义的衡量支持度的一个阈值,表示项目集在统计意义上的最低重要性;最小置信度是用户或专家定义的衡量置信度的一个阈值,表示关联规则的最低可靠性。同时满足最小支持度阈值和最小置信度阈值的规则称为强规则。

支持度计数:

项集A的支持度计数是事务数据集中包含项集A的事务个数,简称为项集的频率或计数。

Apriori的性质:

频繁项集哦的所有非空自己也必须是频繁项集。根据该性质可以得出:向不是频繁项集I的项集中添加事务A,新的项集I U A一定也不是频繁项集。

Apriori算法实现的两个过程:

1)找出所有的频繁项集(支持度必须大于等于给丁的最小支持度阈值),在这个过程中连接步和剪枝步互相融合,最终得到最大频繁项集Lk。

连接步:

连接步的目的是找到K项集,对给定的最小支持度阈值,分别对1项候选集C1,剔除小于该阈值的项集得到1项频繁项集L1;下一步由L1自身连接产生2项候选集C2,保留C2中满足约束条件的项集得到2项频繁集,记为L2;再下一步由L2与L3连接产生3项候选集C3,保留C2中满足约束条件的项集得到3项频繁集,记为L3···这样循环下去,得到最大频繁项集Lk。

剪枝步:

剪枝步紧接着连接步,在产生候选项Ck的过程中起到减小搜索空间的目的。由于Ck是Lk-1与L1连接产生的,根据Apriori的性质频繁项集的所有非空子集也必须是频繁项集,所以不满足该性质的项集不会存在于Ck中,该过程就是剪枝。

2)由频繁项集产生强关联规则:由过程1)可知未超过预定的最小支持度阈值的项集已被提出,如果剩下这些规则又满足了预定的最小置信度阈值,那么就挖掘出了强关联规则。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355