- 有序数组插入数据和删除数据太慢,链表查找数据太慢,而树就结合这两点之间的优势。
树:
根:树最上面的节点称为根节点
父节点:节点向上连接到另外一个节点,那么这个顶点称为父节点
子节点:反之,该节点称为该节点的子节点
二叉树:树的每一个节点最多只能有两个子节点的树
代码实现:
class Node1 {
public Node1(Integer id, String name) {
this.id = id;
this.name = name;
}
private Integer id;
private String name;
private Node1 left;
private Node1 right;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node1 getLeft() {
return left;
}
public void setLeft(Node1 left) {
this.left = left;
}
public Node1 getRight() {
return right;
}
public void setRight(Node1 right) {
this.right = right;
}
@Override
public String toString() {
return "Node1{" +
"id=" + id +
", name='" + name + '\'' +
", left=" + left +
", right=" + right +
'}';
}
}
public class MyTwoTree {
public void insert(Integer id, String name) {
Node1 n1 = new Node1(id, name);
Node1 current = root;
Node1 parent;
if (root == null) {
root = n1;
} else {
while (true) {
parent = current;
if (current.getId() > id) {
current = current.getLeft();
if (current == null) {
parent.setLeft(n1);
return;
}
} else {
current = current.getRight();
if (current == null) {
parent.setRight(n1);
return;
}
}
}
}
}
public Node1 find(Integer id) {
Node1 current = root;
while (!id.equals(current.getId())) {
if (current.getId() > id) {
current = current.getLeft();
} else {
current = current.getRight();
}
if (current == null) {
return null;
}
}
return current;
}
}
2 遍历
(1)前序遍历
先访问树的顶点,再依次访问左节点,右节点
/**
* 前序遍历
*
* @param node
*/
public void forntSort(Node1 node) {
if (node != null) {
System.out.println(node.getId() + ":" + node.getName());
forntSort(node.getLeft());
forntSort(node.getRight());
}
}
(2) 中序遍历
先左节点再顶点再右节点,遍历结果是从小到大依次排序的
/**
* 中序遍历
*
* @param node
*/
public void inSort(Node1 node) {
if (node != null) {
inSort(node.getLeft());
System.out.println(node.getId() + ":" + node.getName());
inSort(node.getRight());
}
}
(3)后序遍历
/**
* 后序遍历
*
* @param node
*/
public void laterSort(Node1 node) {
if (node != null) {
laterSort(node.getLeft());
laterSort(node.getRight());
System.out.println(node.getId() + ":" + node.getName());
}
}
3 删除节点
public boolean delete(Integer id) {
//引用当前节点,从根节点开始
Node1 current = root;
//应用当前节点的父节点
Node1 parent = root;
//是否为左节点
boolean isLeftChild = true;
while (!id.equals(current.getId())) {
parent = current;
//进行比较,比较查找值和当前节点的大小
if (current.getId() > id) {
current = current.getLeft();
isLeftChild = true;
} else {
current = current.getRight();
isLeftChild = false;
}
//如果查找不到
if (current == null) {
return false;
}
}
//删除叶子节点,也就是该节点没有子节点
if (current.getLeft() == null && current.getRight() == null) {
if (current == root) {
root = null;
} else if (isLeftChild) {
parent.setLeft(null);
} else {
parent.setRight(null);
}
} else if (current.getRight() == null) {
if (current == root) {
root = current.getLeft();
} else if (isLeftChild) {
parent.setLeft(current.getLeft());
} else {
parent.setRight(current.getLeft());
}
} else if (current.getLeft() == null) {
if (current == root) {
root = current.getRight();
} else if (isLeftChild) {
parent.setLeft(current.getRight());
} else {
parent.setRight(current.getRight());
}
} else {
Node1 inRep = getInRep(current);
if (current == root) {
root = inRep;
} else if (isLeftChild) {
parent.setLeft(inRep);
} else {
parent.setRight(inRep);
}
inRep.setLeft(current.getLeft());
}
return true;
}