【039】5G的优势

关于数消费者而言,5G的价值在于它拥有比4g LTE更快的速度(峰值速率可达几十Gbps),例如你能够在一秒钟内下载一部高清电影,而4G LTE也许要10分钟。也恰是由于这一得天独厚的优势,业界普遍以为5G将在无人驾驶汽车、VR以及物联网等范畴表现重要作用。

和4G相比,5G的进步是全方位的,依照3GPP的界说,5G具有高功能、低推迟与高容量特性,而这些长处首要体如今毫米波、小基站、Massive MIMO、全双工以及波束成形这五大技能上。

1、毫米波

尽人皆知,跟着衔接到无线网络设备的数量的添加,频谱资本稀缺的疑问日渐杰出。最少就如今而言,咱们还只能在极端狭隘的频谱上共享有限的带宽,这极大的影响了用户的体会。

那么5G供给的几十个Gbps峰值速度怎么完成呢?

尽人皆知,无线传输添加传输速率通常有两种办法,一是添加频谱利用率,二是添加频谱带宽。5G运用毫米波(26.5-300GHz)即是经过第二种办法来进步速率,以28GHz频段为例,其可用频谱带宽达到了1GHz,而60GHz频段每个信道的可用信号带宽则为2GHz。

在移动通讯的历史上,这是初次敞开新的频带资本。在此之前,毫米波只在卫星和雷达体系上被运用,但如今已经有运营商开端运用毫米波在基站之间做测试。

当然,毫米波最大的缺陷即是穿透力差、衰减大,因而要让毫米波频段下的5G通讯在高楼树立的环境下传输并不简单,而小基站将处理这一疑问。

2、小基站

上文说到毫米波的穿透力差而且在空气中的衰减很大,但由于毫米波的频率很高,波长很短,这就意味着其天线尺度能够做得很小,这是布置小基站的根底。

能够预见的是,将来5G移动通讯将不再依靠大型基站的布建架构,很多的小型基站将变成新的趋势,它能够掩盖大基站无法触及的末梢通讯。

由于体积的大幅减小,咱们设置能够在250米摆布布置一个小基站,这样摆放下来,运营商能够在每个城市中布置数千个小基站以构成密布网络,每个基站能够 从其它基站接纳信号并向任何方位的用户发送数据。当然,你大可不必担心功耗疑问,小基站不只在规模上要远远小于大基站,功耗上也大大减小了。

除了经过毫米波播送以外,5G基站还将拥有比方今蜂窝网络基站多得多的天线,也即是Massive MIMO技能。

3、Massive MIMO

现有的4G基站只要十几根天线,但5G基站能够支撑上百根天线,这些天线能够经过Massive MIMO技能构成大规模天线阵列,这就意味着基站能够一起从更多用户发送和接纳信号,然后将移动网络的容量进步数十倍倍或更大。

MIMO(Multiple-Input Multiple-Output)的意思是多输入多输出,实际上这种技能已经在一些4G基站上得到了运用。但到目前为止,Massive MIMO仅在试验室和几个现场试验中进行了测试。

隆德大学教授Ove Edfors曾指出,“Massive MIMO敞开了无线通讯的新方向——当传统体系运用时域或频域为不一样用户之间完成资本共享时,Massive MIMO则导入了空间域(spatial domain)的途径,其办法是在基地台选用很多的天线以及为其进行同步处理,如此则可一起在频谱效益与动力功率方面获得几十倍的增益。”

毋庸置疑,Massive MIMO是5G能否完成商用的要害技能,可是多天线也势必会带来更多的搅扰,而波束成形即是处理这一疑问的要害。

4、波束成形

Massive MIMO的首要应战是削减搅扰,但恰是由于Massive MIMO技能每个天线阵列集成了更多的天线,假如能有效地操控这些天线,让它宣布的每个电磁波的空间互相抵消或许增强,就能够构成一个很窄的波束,而不是全向发射,有限的能量都会集在特定方向上进行传输,不只传输间隔更远了,而且还防止了信号的搅扰,这种将无线信号(电磁波)按特定方向传播的技能叫做波束 成形(beamforming)。

这一技能的优势不只如此,它能够进步频谱利用率,经过这一技能咱们能够一起从多个天线发送更多信息;在大规模天线基站,咱们乃至能够经过信号处理算法来计算出信号的传输的最好途径,而且终究移动终端的方位。因而,波束成形能够处理毫米波信号被障碍物阻挠 以及远间隔衰减的疑问。

除此以外,最终要说到5G的另一大特征——全双工技能。

全双工技能是指设备的发射机和接纳机占用一样的频率资本一起进行工作,使得通讯两头在上、下行能够在相一起刻运用一样的频率,突破了现有的频分双工(FDD)和时分双工(TDD)形式,这是通讯节点完成双向通讯的要害之一,也是5G所需的高吞吐量和低推迟的要害技能。

在同一信道上一起接纳和发送,这无疑大大进步了频谱功率。可是5G要运用这一颠覆性技能也面临着不小的应战,依据《移动通讯》之前发布的材料显示,首要有一下三大应战:

电路板件规划,自搅扰消除电路需满意宽频(大于100MHZ)和多MIMO(多于32天线)的条件,且请求尺度小、功耗低以及本钱不能太高。物理层、MAC层的优化规划疑问,比方编码、调制、同步、检查、侦听、抵触防止、ACK等,尤其是对于MIMO的物理层优化。对全双工和半双工之间动态切换的操控面优化,以及对现有帧结构和操控信令的优化疑问。

因而,虽然5G的气势远远超过了之前的4G,但5G的将来仍充满了不确定性,如今咱们需求等候的是这些技能从试验期间走向有用。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,390评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,821评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,632评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,170评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,033评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,098评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,511评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,204评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,479评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,572评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,341评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,893评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,171评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,486评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,676评论 2 335

推荐阅读更多精彩内容