Ubuntu 16.04, Python 2.7 安装 TensorFlow CPU

Ubuntu 16.04, Python 2.7 安装 TensorFlow CPU


  1. 安装 Virtualenv
$ sudo apt-get install python-pip python-dev python-virtualenv # for Python 2.7
  1. 创建 Virtualenv 环境
$ virtualenv --system-site-packages ~/tensorflow # for Python 2.7
  1. 激活 Virtualenv
$ source ~/tensorflow/bin/activate # bash, sh, ksh, or zsh

提示符改变

(tensorflow)$ 
  1. 确保 pip ≥8.1
(tensorflow)$ easy_install -U pip
  1. Virtualenv 环境下安装 TensorFlow
(tensorflow)$ pip install --upgrade tensorflow      # for Python 2.7
  1. Hello World
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
(tensorflow) $ python hello.py 
Hello, TensorFlow!
  1. 退出 Virtualenv
(tensorflow)$ deactivate** 

Installing TensorFlow on Ubuntu


This guide explains how to install TensorFlow on Ubuntu. Although these instructions might also work on other Linux variants, we have only tested (and we only support) these instructions on machines meeting the following requirements:

  • 64-bit desktops or laptops
  • Ubuntu 16.04 or higher

Determine which TensorFlow to install

You must choose one of the following types of TensorFlow to install:

  • TensorFlow with CPU support only. If your system does not have a NVIDIA® GPU, you must install this version. Note that this version of TensorFlow is typically much easier to install (typically, in 5 or 10 minutes), so even if you have an NVIDIA GPU, we recommend installing this version first.
  • TensorFlow with GPU support. TensorFlow programs typically run significantly faster on a GPU than on a CPU. Therefore, if your system has a NVIDIA® GPU meeting the prerequisites shown below and you need to run performance-critical applications, you should ultimately install this version.

NVIDIA requirements to run TensorFlow with GPU support

If you are installing TensorFlow with GPU support using one of the mechanisms described in this guide, then the following NVIDIA software must be installed on your system:

  • CUDA® Toolkit 9.0. For details, see NVIDIA's documentation. Ensure that you append the relevant CUDA pathnames to the LD_LIBRARY_PATH environment variable as described in the NVIDIA documentation.
  • The NVIDIA drivers associated with CUDA Toolkit 9.0.
  • cuDNN v7.0. For details, see NVIDIA's documentation. Ensure that you create the CUDA_HOME environment variable as described in the NVIDIA documentation.
  • GPU card with CUDA Compute Capability 3.0 or higher for building from source and 3.5 or higher for our binaries. See NVIDIA documentation for a list of supported GPU cards.
  • The libcupti-dev library, which is the NVIDIA CUDA Profile Tools Interface. This library provides advanced profiling support. To install this library, issue the following command for CUDA Toolkit >= 8.0:
$ sudo apt-get install cuda-command-line-tools
and add its path to your `LD_LIBRARY_PATH` environment variable:
$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}/usr/local/cuda/extras/CUPTI/lib64
For CUDA Toolkit <= 7.5 do:
$ sudo apt-get install libcupti-dev
* **[OPTIONAL]** For optimized inferencing performance, you can also install NVIDIA TensorRT 3.0\. For details, see [NVIDIA's TensorRT documentation](http://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#installing-tar). Only steps 1-4 in the TensorRT Tar File installation instructions are required for compatibility with TensorFlow; the Python package installation in steps 5 and 6 can be omitted. Detailed installation instructions can be found at [package documentataion](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/tensorrt#installing-tensorrt-304)

**IMPORTANT:** For compatibility with the pre-built `tensorflow-gpu` package, please use the Ubuntu **14.04** tar file package of TensorRT even when installing onto an Ubuntu 16.04 system.

If you have an earlier version of the preceding packages, please upgrade to the specified versions. If upgrading is not possible, then you may still run TensorFlow with GPU support, but only if you do the following:

  • Install TensorFlow from sources as documented in Installing TensorFlow from Sources.
  • Install or upgrade to at least the following NVIDIA versions:
    • CUDA toolkit 7.0 or greater
    • cuDNN v3 or greater
    • GPU card with CUDA Compute Capability 3.0 or higher.

Determine how to install TensorFlow

You must pick the mechanism by which you install TensorFlow. The supported choices are as follows:

We recommend the Virtualenv installation. Virtualenv is a virtual Python environment isolated from other Python development, incapable of interfering with or being affected by other Python programs on the same machine. During the Virtualenv installation process, you will install not only TensorFlow but also all the packages that TensorFlow requires. (This is actually pretty easy.) To start working with TensorFlow, you simply need to "activate" the virtual environment. All in all, Virtualenv provides a safe and reliable mechanism for installing and running TensorFlow.

Native pip installs TensorFlow directly on your system without going through any container system. We recommend the native pip install for system administrators aiming to make TensorFlow available to everyone on a multi-user system. Since a native pip installation is not walled-off in a separate container, the pip installation might interfere with other Python-based installations on your system. However, if you understand pip and your Python environment, a native pip installation often entails only a single command.

Docker completely isolates the TensorFlow installation from pre-existing packages on your machine. The Docker container contains TensorFlow and all its dependencies. Note that the Docker image can be quite large (hundreds of MBs). You might choose the Docker installation if you are incorporating TensorFlow into a larger application architecture that already uses Docker.

In Anaconda, you may use conda to create a virtual environment. However, within Anaconda, we recommend installing TensorFlow with the pip install command, not with the conda install command.

NOTE: The conda package is community supported, not officially supported. That is, the TensorFlow team neither tests nor maintains the conda package. Use that package at your own risk.

Installing with Virtualenv

Take the following steps to install TensorFlow with Virtualenv:

  1. Install pip and Virtualenv by issuing one of the following commands:
$ sudo apt-get install python-pip python-dev python-virtualenv** # for Python 2.7
$ sudo apt-get install python3-pip python3-dev python-virtualenv** # for Python 3.n
  1. Create a Virtualenv environment by issuing one of the following commands:
$ virtualenv --system-site-packages** *targetDirectory* # for Python 2.7
$ virtualenv --system-site-packages -p python3** *targetDirectory* # for Python 3.n
where `*targetDirectory*` specifies the top of the Virtualenv tree. Our instructions assume that `*targetDirectory*` is `~/tensorflow`, but you may choose any directory.
  1. Activate the Virtualenv environment by issuing one of the following commands:
$ source ~/tensorflow/bin/activate** # bash, sh, ksh, or zsh
$ source ~/tensorflow/bin/activate.csh**  # csh or tcsh
The preceding **source** command should change your prompt to the following:
(tensorflow)$ 
  1. Ensure pip ≥8.1 is installed:
(tensorflow)$ easy_install -U pip
  1. Issue one of the following commands to install TensorFlow in the active Virtualenv environment:
(tensorflow)$ pip install --upgrade tensorflow**      # for Python 2.7
(tensorflow)$ pip3 install --upgrade tensorflow**     # for Python 3.n
(tensorflow)$ pip install --upgrade tensorflow-gpu**  # for Python 2.7 and GPU
(tensorflow)$ pip3 install --upgrade tensorflow-gpu** # for Python 3.n and GPU
If the above command succeeds, skip Step 6\. If the preceding command fails, perform Step 6.
  1. (Optional) If Step 5 failed (typically because you invoked a pip version lower than 8.1), install TensorFlow in the active Virtualenv environment by issuing a command of the following format:
(tensorflow)$ pip install --upgrade** *tfBinaryURL*   # Python 2.7
(tensorflow)$ pip3 install --upgrade** *tfBinaryURL*  # Python 3.n 
where `*tfBinaryURL*` identifies the URL of the TensorFlow Python package. The appropriate value of `*tfBinaryURL*`depends on the operating system, Python version, and GPU support. Find the appropriate value for `*tfBinaryURL*` for your system [here](https://tensorflow.google.cn/install/install_linux#the_url_of_the_tensorflow_python_package). For example, if you are installing TensorFlow for Linux, Python 3.4, and CPU-only support, issue the following command to install TensorFlow in the active Virtualenv environment:
(tensorflow)$ pip3 install --upgrade \
     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp34-cp34m-linux_x86_64.whl

If you encounter installation problems, see Common Installation Problems.

Next Steps

After installing TensorFlow, validate the installation.

Note that you must activate the Virtualenv environment each time you use TensorFlow. If the Virtualenv environment is not currently active, invoke one of the following commands:

$ source ~/tensorflow/bin/activate**      # bash, sh, ksh, or zsh
$ source ~/tensorflow/bin/activate.csh**  # csh or tcsh

When the Virtualenv environment is active, you may run TensorFlow programs from this shell. Your prompt will become the following to indicate that your tensorflow environment is active:

(tensorflow)$ 

When you are done using TensorFlow, you may deactivate the environment by invoking the deactivate function as follows:

(tensorflow)$ deactivate** 

The prompt will revert back to your default prompt (as defined by the PS1 environment variable).

Uninstalling TensorFlow

To uninstall TensorFlow, simply remove the tree you created. For example:

$ rm -r** *targetDirectory* 

Installing with native pip

You may install TensorFlow through pip, choosing between a simple installation procedure or a more complex one.

Note: The REQUIRED_PACKAGES section of setup.py lists the TensorFlow packages that pip will install or upgrade.

Prerequisite: Python and Pip

Python is automatically installed on Ubuntu. Take a moment to confirm (by issuing a python -V command) that one of the following Python versions is already installed on your system:

  • Python 2.7
  • Python 3.4+

The pip or pip3 package manager is usually installed on Ubuntu. Take a moment to confirm (by issuing a pip -V or pip3 -V command) that pip or pip3 is installed. We strongly recommend version 8.1 or higher of pip or pip3. If Version 8.1 or later is not installed, issue the following command, which will either install or upgrade to the latest pip version:

$ sudo apt-get install python-pip python-dev**   # for Python 2.7
$ sudo apt-get install python3-pip python3-dev** # for Python 3.n

Install TensorFlow

Assuming the prerequisite software is installed on your Linux host, take the following steps:

  1. Install TensorFlow by invoking one of the following commands:
$ pip install tensorflow**      # Python 2.7; CPU support (no GPU support)
$ pip3 install tensorflow**     # Python 3.n; CPU support (no GPU support)
$ pip install tensorflow-gpu**  # Python 2.7;  GPU support
$ pip3 install tensorflow-gpu** # Python 3.n; GPU support 
If the preceding command runs to completion, you should now [validate your installation](https://tensorflow.google.cn/install/install_linux#ValidateYourInstallation).
  1. (Optional.) If Step 1 failed, install the latest version of TensorFlow by issuing a command of the following format:
$ sudo pip  install --upgrade** *tfBinaryURL*   # Python 2.7
$ sudo pip3 install --upgrade** *tfBinaryURL*   # Python 3.n 
where `*tfBinaryURL*` identifies the URL of the TensorFlow Python package. The appropriate value of `*tfBinaryURL*` depends on the operating system, Python version, and GPU support. Find the appropriate value for `*tfBinaryURL*` [here](https://tensorflow.google.cn/install/install_linux#the_url_of_the_tensorflow_python_package). For example, to install TensorFlow for Linux, Python 3.4, and CPU-only support, issue the following command:
 $ sudo pip3 install --upgrade \
     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp34-cp34m-linux_x86_64.whl
If this step fails, see [Common Installation Problems](https://tensorflow.google.cn/install/install_linux#common_installation_problems).

Next Steps

After installing TensorFlow, validate your installation.

Uninstalling TensorFlow

To uninstall TensorFlow, issue one of following commands:

$ sudo pip uninstall tensorflow**  # for Python 2.7
$ sudo pip3 uninstall tensorflow** # for Python 3.n

Installing with Docker

Take the following steps to install TensorFlow through Docker:

  1. Install Docker on your machine as described in the Docker documentation.
  2. Optionally, create a Linux group called docker to allow launching containers without sudo as described in the Docker documentation. (If you don't do this step, you'll have to use sudo each time you invoke Docker.)
  3. To install a version of TensorFlow that supports GPUs, you must first install nvidia-docker, which is stored in github.
  4. Launch a Docker container that contains one of the TensorFlow binary images.

The remainder of this section explains how to launch a Docker container.

CPU-only

To launch a Docker container with CPU-only support (that is, without GPU support), enter a command of the following format:

$ docker run -it *-p hostPort:containerPort TensorFlowCPUImage*

where:

  • -p hostPort:containerPort is optional. If you plan to run TensorFlow programs from the shell, omit this option. If you plan to run TensorFlow programs as Jupyter notebooks, set both hostPort and containerPort to 8888. If you'd like to run TensorBoard inside the container, add a second -p flag, setting both hostPort and containerPort to 6006.

  • TensorFlowCPUImage is required. It identifies the Docker container. Specify one of the following values:

    • tensorflow/tensorflow, which is the TensorFlow CPU binary image.
    • tensorflow/tensorflow:latest-devel, which is the latest TensorFlow CPU Binary image plus source code.
    • tensorflow/tensorflow:version**, which is the specified version (for example, 1.1.0rc1) of TensorFlow CPU binary image.
    • tensorflow/tensorflow:version-devel**, which is the specified version (for example, 1.1.0rc1) of the TensorFlow GPU binary image plus source code.

    TensorFlow images are available at dockerhub.

For example, the following command launches the latest TensorFlow CPU binary image in a Docker container from which you can run TensorFlow programs in a shell:

$ docker run -it tensorflow/tensorflow bash

The following command also launches the latest TensorFlow CPU binary image in a Docker container. However, in this Docker container, you can run TensorFlow programs in a Jupyter notebook:

$ docker run -it -p 8888:8888 tensorflow/tensorflow

Docker will download the TensorFlow binary image the first time you launch it.

GPU support

Prior to installing TensorFlow with GPU support, ensure that your system meets all NVIDIA software requirements. To launch a Docker container with NVidia GPU support, enter a command of the following format:

$ nvidia-docker run -it** *-p hostPort:containerPort TensorFlowGPUImage*

where:

  • -p hostPort:containerPort is optional. If you plan to run TensorFlow programs from the shell, omit this option. If you plan to run TensorFlow programs as Jupyter notebooks, set both hostPort and *containerPort* to 8888.
  • TensorFlowGPUImage specifies the Docker container. You must specify one of the following values:
    • tensorflow/tensorflow:latest-gpu, which is the latest TensorFlow GPU binary image.
    • tensorflow/tensorflow:latest-devel-gpu, which is the latest TensorFlow GPU Binary image plus source code.
    • tensorflow/tensorflow:version-gpu**, which is the specified version (for example, 0.12.1) of the TensorFlow GPU binary image.
    • tensorflow/tensorflow:version-devel-gpu**, which is the specified version (for example, 0.12.1) of the TensorFlow GPU binary image plus source code.

We recommend installing one of the latest versions. For example, the following command launches the latest TensorFlow GPU binary image in a Docker container from which you can run TensorFlow programs in a shell:

$ nvidia-docker run -it tensorflow/tensorflow:latest-gpu bash

The following command also launches the latest TensorFlow GPU binary image in a Docker container. In this Docker container, you can run TensorFlow programs in a Jupyter notebook:

$ nvidia-docker run -it -p 8888:8888 tensorflow/tensorflow:latest-gpu

The following command installs an older TensorFlow version (0.12.1):

$ nvidia-docker run -it -p 8888:8888 tensorflow/tensorflow:0.12.1-gpu

Docker will download the TensorFlow binary image the first time you launch it. For more details see the TensorFlow docker readme.

Next Steps

You should now validate your installation.

Installing with Anaconda

Take the following steps to install TensorFlow in an Anaconda environment:

  1. Follow the instructions on the Anaconda download site to download and install Anaconda.

  2. Create a conda environment named tensorflow to run a version of Python by invoking the following command:

$ conda create -n tensorflow pip python=2.7 # or python=3.3, etc.
  1. Activate the conda environment by issuing the following command:
$ source activate tensorflow
 (tensorflow)$  # Your prompt should change 
  1. Issue a command of the following format to install TensorFlow inside your conda environment:
(tensorflow)$ pip install --ignore-installed --upgrade** *tfBinaryURL*
where `*tfBinaryURL*` is the [URL of the TensorFlow Python package](https://tensorflow.google.cn/install/install_linux#the_url_of_the_tensorflow_python_package). For example, the following command installs the CPU-only version of TensorFlow for Python 3.4:
 (tensorflow)$ pip install --ignore-installed --upgrade \
     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp34-cp34m-linux_x86_64.whl

Validate your installation

To validate your TensorFlow installation, do the following:

  1. Ensure that your environment is prepared to run TensorFlow programs.
  2. Run a short TensorFlow program.

Prepare your environment

If you installed on native pip, Virtualenv, or Anaconda, then do the following:

  1. Start a terminal.
  2. If you installed with Virtualenv or Anaconda, activate your container.
  3. If you installed TensorFlow source code, navigate to any directory except one containing TensorFlow source code.

If you installed through Docker, start a Docker container from which you can run bash. For example:

$ docker run -it tensorflow/tensorflow bash

Run a short TensorFlow program

Invoke python from your shell as follows:

$ python

Enter the following short program inside the python interactive shell:

# Python  import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!') sess = tf.Session()  print(sess.run(hello))` 

If the system outputs the following, then you are ready to begin writing TensorFlow programs:

Hello, TensorFlow!

If you are new to TensorFlow, see Getting Started with TensorFlow.

If the system outputs an error message instead of a greeting, see Common installation problems.

Common installation problems

We are relying on Stack Overflow to document TensorFlow installation problems and their remedies. The following table contains links to Stack Overflow answers for some common installation problems. If you encounter an error message or other installation problem not listed in the following table, search for it on Stack Overflow. If Stack Overflow doesn't show the error message, ask a new question about it on Stack Overflow and specify the tensorflow tag.

Stack Overflow Link
Error Message

36159194

ImportError: libcudart.so.*Version*: cannot open shared object file:
  No such file or directory

41991101

ImportError: libcudnn.*Version*: cannot open shared object file:
  No such file or directory

36371137 and here

libprotobuf ERROR google/protobuf/src/google/protobuf/io/coded_stream.cc:207] A
  protocol message was rejected because it was too big (more than 67108864 bytes).
  To increase the limit (or to disable these warnings), see
  CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.

35252888

Error importing tensorflow. Unless you are using bazel, you should
  not try to import tensorflow from its source directory; please exit the
  tensorflow source tree, and relaunch your python interpreter from
  there.

33623453

IOError: [Errno 2] No such file or directory:
  '/tmp/pip-o6Tpui-build/setup.py'

42006320

ImportError: Traceback (most recent call last):
  File ".../tensorflow/core/framework/graph_pb2.py", line 6, in <module>
  from google.protobuf import descriptor as _descriptor
  ImportError: cannot import name 'descriptor'</module>

35190574

SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify
  failed

42009190

  Installing collected packages: setuptools, protobuf, wheel, numpy, tensorflow
  Found existing installation: setuptools 1.1.6
  Uninstalling setuptools-1.1.6:
  Exception:
  ...
  [Errno 1] Operation not permitted:
  '/tmp/pip-a1DXRT-uninstall/.../lib/python/_markerlib' 

36933958

  ...
  Installing collected packages: setuptools, protobuf, wheel, numpy, tensorflow
  Found existing installation: setuptools 1.1.6
  Uninstalling setuptools-1.1.6:
  Exception:
  ...
  [Errno 1] Operation not permitted:
  '/tmp/pip-a1DXRT-uninstall/System/Library/Frameworks/Python.framework/
   Versions/2.7/Extras/lib/python/_markerlib'

The URL of the TensorFlow Python package

A few installation mechanisms require the URL of the TensorFlow Python package. The value you specify depends on three factors:

  • operating system
  • Python version
  • CPU only vs. GPU support

This section documents the relevant values for Linux installations.

Python 2.7

CPU only:

https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp27-none-linux_x86_64.whl

GPU support:

https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.7.0-cp27-none-linux_x86_64.whl

Note that GPU support requires the NVIDIA hardware and software described in NVIDIA requirements to run TensorFlow with GPU support.

Python 3.4

CPU only:

https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp34-cp34m-linux_x86_64.whl

GPU support:

https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.7.0-cp34-cp34m-linux_x86_64.whl

Note that GPU support requires the NVIDIA hardware and software described in NVIDIA requirements to run TensorFlow with GPU support.

Python 3.5

CPU only:

https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp35-cp35m-linux_x86_64.whl

GPU support:

https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.7.0-cp35-cp35m-linux_x86_64.whl

Note that GPU support requires the NVIDIA hardware and software described in NVIDIA requirements to run TensorFlow with GPU support.

Python 3.6

CPU only:

https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp36-cp36m-linux_x86_64.whl

GPU support:

https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.7.0-cp36-cp36m-linux_x86_64.whl

Note that GPU support requires the NVIDIA hardware and software described in NVIDIA requirements to run TensorFlow with GPU support.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated April 9, 2018.

https://tensorflow.google.cn/install/install_linux

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容