爬取中国天气网并且渲染

import requests
from bs4 import BeautifulSoup
from pyecharts import Bar

all_data = []

def parse_page(url):
    headers = {
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
    }
    response = requests.get(url,headers = headers)
    text = response.content.decode('utf-8')
    soup = BeautifulSoup(text,'html5lib')  # 由于港澳台的html代码不完整,'html5lib'解析器容错率强,比lxml好,但速度比较慢
    today = soup.find('div',class_="conMidtab")
    tables = today.find_all('table') # 省/直辖市
    for table in tables:
        trs = table.find_all('tr')[2:]  # 第三个tr标签开始
        for index,tr in enumerate(trs): # 每行表格
            tds = tr.find_all('td')  
            if index == 0:  # tr标签下面第一行的index为0,那么就是开头第一个城市,开头第一个城市td标签与第二个不一样
                city_td = tds[1]
            else:
                city_td = tds[0]
            city = list(city_td.stripped_strings)[0]
            weather = tds[-2]
            low_weather = list(weather.stripped_strings)[0]
            all_data.append({'城市':city,'最低气温':int(low_weather)})

def spider():
    urls = {
        'http://www.weather.com.cn/textFC/hb.shtml',
        'http://www.weather.com.cn/textFC/db.shtml',
        'http://www.weather.com.cn/textFC/hd.shtml',
        'http://www.weather.com.cn/textFC/hz.shtml',
        'http://www.weather.com.cn/textFC/hn.shtml',
        'http://www.weather.com.cn/textFC/xb.shtml',
        'http://www.weather.com.cn/textFC/xn.shtml',
        'http://www.weather.com.cn/textFC/gat.shtml'

    }
    for url in urls:
        parse_page(url)
    '''
    all_data = [
        {'城市': '宿迁', '最低气温': '2'},
        {'城市': '济南', '最低气温': '2'},
        {'城市': '青岛', '最低气温': '1'},
        {'城市': '淄博', '最低气温': '-2'},
        {'城市': '德州', '最低气温': '-1'},
        {'城市': '烟台', '最低气温': '-2'}
    ]

    def sorr_key(data):
        weather = data['最低气温']  # all_data['最低气温']
        return weather
    
    all_data.sort(key=sorr_key)
    '''
    all_data.sort(key=lambda data:data['最低气温'])
    data = all_data[0:10]
    
    cities = list(map(lambda x:x['城市'],data))
    weather = list(map(lambda x:x['最低气温'],data))
    
    chart = Bar("中国天气最低温排行榜") # 柱形图
    chart.add('',cities,weather)
    chart.render('temperature.html')


spider()

ps:这次爬虫需要注意的是lxml解释器不一定很好用,html5lib虽然兼容性高,但是速度慢,map函数以及sort和lambda函数的用法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容