4.1 连续变量假设检验 之 假设检验简介

在总体的分布函数只知其形式,但不知其参数的情况下,或者对总体分布完全未知的情况下,为了推断总体的某些未知特征,先提出某些关于总体的假设,然后要根据样本,采用适当的方法对所提出的假设做出接受或者拒绝的决策,这一过程叫做假设检验(hypothesis test)。假设检验分为参数检验非参数检验

我们通过简单示例来说明概念:

某制药公司宣称,改公司研发的一款治疗打鼾的药,可以使患者两周内的治愈率为90%。某医院医生,在临床观察中抽取了15名患者发现:两周治疗后,治愈的患者数为11,未治愈患者数为4。根据制药公司都说法,这15名患者中,应该有14人治愈。现在问题来了,到底该制药公司发布的是虚假广告,还是医生抽样数据有问题?

我们可以对制药公司的断言进行检验:首先假设制药公司的断言属实,然后出这个断言出发对现有的证据进行检验,最后做出决策。这个过程,称为假设检验

基本思想

假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。小概率思想是指小概率事件在一次试验中基本上不会发生。反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应**接受假设H0 **。

假设检验中所谓“小概率事件”,并非逻辑中的绝对矛盾,而是基于人们在实践中广泛采用的原则,即小概率事件在一次试验中是几乎不发生的,但概率小到什么程度才能算作“小概率事件”,显然,“小概率事件”的概率越小,否定原假设H0就越有说服力,常记这个概率值为α(0<α<1),称为检验的显著性水平。对于不同的问题,检验的显著性水平α不一定相同,一般认为,事件发生的概率小于0.10.050.01等,即“小概率事件” 。

假设检验的步骤

一个完整的假设检验过程,包括以下几个步骤:

  • 提出假设;
  • 构造适当的检验统计量,并根据样本计算统计量的具体数值;
  • 规定显著性水平,建立检验规则;
  • 做出判断。

假设检验的假设

从前面步骤可看出,我们首先提出两个新假设:

一种叫原假设,也叫零假设,用H0表示。原假设一般是统计者想要拒绝的假设。原假设的设置一般为:等于=、大于等于>=、小于等于<=。
另外一种叫备择假设,用H1表示。备则假设是统计者想要接受的假设。备择假设的设置一般为:不等于、大于>、小于<。

在前面的示例中,原假设和备择假设分别是:

  • 原假设:药物能够在两周内治愈90%的患者,记作:H0:p=0.9
  • 备择假设:药物在两周内之余患者少于90%,记作:H1:P<0.9

为什么统计着想要拒绝的假设放在原假设呢?因为原假设被拒绝出错的话,只能犯第I类错误,而犯第I类错误的概率已经被规定的显著性水平所控制。是不是有点不太明白,我们来看下一节。

假设检验中两类错误

第I类错误(Type I Error):又称弃真错误,当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率通常记为α 。
第Ⅱ类错误(type Ⅱ error): 又称取伪错误,当原假设为假时没有拒绝原假设。犯第Ⅱ类错误的概率通常记为β。

image.png

在统计实践中,进行假设检验时一般先控制第Ⅰ类错误发生的概率,并确定犯第Ⅰ类错误的概率最大值,称为检验的显著性水平。在样本容量n不变的条件下,犯两类错误的概率常常呈现反向的变化,要使α和β 都同时减小,除非增加样本的容量。因此,统计学家奈曼与皮尔逊提出了一个原则:即在控制犯第一类错误的概率情况下,尽量使犯第二类错误的概率小
在实际问题中,我们往往把要否定的陈述作为原假设,而把拟采纳的陈述本身作为备择假设,只对犯第一类错误的概率加以限制,而不考虑犯第二类错误的概率。

显著性水平

在统计假设中,这种只控制α而不考虑β的假设检验,称为显著性检验,α称为显著性水平。显著性水平是指当原假设实际上正确时,检验统计量落在拒绝域的概率,简单理解就是犯弃真错误的概率。

显著性水平最常用的取值是:0.05/0.01/0.001等。一般情况下,根据研究的问题,如果犯弃针错误损失大,为减少此类错误,α的取值应适当减少。

检验方式与拒绝域

检验方式分为两种:双侧检验与单侧检验,单侧检验包括左侧检验、右侧检验。双侧检验则是包含左右侧检验。
拒绝域:拒绝域是由显著性水平围成的区域。拒绝域的功能主要用来判断假设检验是否拒绝原假设的。如果样本观测计算出来的检验统计量的具体数值落在拒绝域内,就拒绝原假设,否则不拒绝原假设。给定显著性水平α后,查表就可以得到具体临界值,将检验统计量与临界值进行比较,判断是否拒绝原假设。
双侧检验拒绝域:

image.png

左侧检验拒绝域:

image.png

右侧检验拒绝域:

image.png

那么我们如何判断样本结果是否位于拒绝域中?判断是否位于拒绝域中,就是比较p值与α进行比较,所以样本结果位于拒绝域的条件是:

左尾:p < α

右尾:p < α

双尾:p < α/2 (有待验证)

对于示例中的判断,若设定显著性水平为0.05,则若p<0.05,则拒绝H0,接受H1,反之亦然。

假设检验的假设形式

对于一个总体样本均数的假设检验形式:

双侧检验:H0:μ=μ0,H1:μ≠μ0

左侧检验:H0:μ>=μ0,H1:μ<μ0

右侧检验:H0:μ<=μ0,H1:μ>μ0

判断原则:P<α,拒绝H0

两个总体样本均数的假设检验形式:

双侧检验:H0:μ1=μ2,H1:μ1≠μ2

左侧检验:H0:μ1>=μ2,H1:μ1<μ2

右侧检验:H0:μ1<=μ2,H1:μ1>μ2

判断原则:P<α,拒绝H0

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,192评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,858评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,517评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,148评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,162评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,905评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,537评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,439评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,956评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,083评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,218评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,899评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,565评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,093评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,201评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,539评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,215评论 2 358

推荐阅读更多精彩内容