还是推荐电影,这次是基于物品的协同过滤

基于用户的协同过滤,适用于物品较少,用户也不太多的情况。如果用户太多了,针对每个用户的购买情况来计算哪些用户和他品味类似,效率很低下。如果商品很多,每个用户购买的商品重合的可能性很小,这样判断品味是否相似也就变得比较困难了。

还有一类智能推荐算法,是“基于物品的协同过滤”。消费者每天都在买买买,行为变化很快,但是物品每天虽然也有变化,但是和物品总量相比变化还是少很多。这样,就可以预先计算物品之间的相似程度,然后再利用顾客实际购买的情况找出相似的物品做推荐。

由于物品整体变化不大,所以这个相似程度不用每天都算,节省计算资源;同时,可以只给某一样商品只备选5个相似商品,推荐时只做这5个相似物品的加权评分,避免对所有商品都进行加权评分,以避免大量计算。这么说有点抽象,还是看一个例子吧。

还是用上一篇文章的例子,目的是给A推荐一部电影


Score

首先是计算电影之间的相似度,方法还是有很多,这次用Pearson相关系数来做,公式为:

pearson.png

公式看起来复杂,其实可以分成6个部分分别计算就好了,我们选《寻龙诀》(X)和《小门神》(Y)作为例子,来算一下相似度,则
X=(3.5,5.0,3.0)
Y=(3.0,3.5,2.0)
数字就是评分,因为只有三个人同时看了这两个电影,所以X,Y两个向量都只有三个元素。按照公式逐步计算:

1. x和y的乘积再求和:3.5×3.0+5.0×3.5+3.0×2.0 = 34
2. x求和乘以y求和,再除以个数:((3.5+5.0+3.0)×(3.0+3.5+2.0))/ 3 = 32.58
3. x的平方和:3.52+5.02+3.0^2 = 46.25
4. x和的平方除以个数:((3.5+5.0+3.0)^2)) / 3 = 44.08
5. y的平方和:3.02+3.52+2.0^2 = 25.25
6. y和的平方除以个数:((3.0+3.5+2.0)^2)) / 3 = 24.08

最终把这几块的结果带入到整体的公式中:得出相关系数为0.89

按照这种方法,需要两两计算电影的相似性,最终结果如下表:


相似性

相关系数取值为【-1,1】,1表示完全相似,0表示没关系,-1表示完全相反。结合到电影偏好上,如果相关系数为负数,比如《老炮儿》和《唐人街探案》,意思是说,喜欢《老炮儿》的人,存在厌恶《唐人街探案》的倾向。

然后就可以为A推荐电影了,思路是:A只看过两个电影,然后看根据其他电影与这两个电影的相似程度,进行加权评分,得出应该推荐给A的电影,具体方法可以列一个表:

final

用A看过的电影的评分,和其他电影的相似度相乘(红框),然后再把相乘后的结果加和(绿框),得出最后的推荐度。这里可以看到,应该向A推荐《寻龙诀》,和上一篇文章用基于用户的协同过滤算法结果是一致的。

#总结#
推荐算法的几个基本思想:

  • 根据和你共同喜好的人来给你推荐(基于用户的)
  • ​根据你喜欢的物品找出和它相似的来给你推荐(基于物品的)
  • 根据你给出的关键字来给你推荐(退化成搜索算法)
  • 根据上面的几种条件组合起来给你推荐

经过多年的发展,思想还是这些思想,变化的地方在于计算相似度的衡量标准上,进而衍生出了各种计算相似度的算法,各种算法的优劣体现在相似度判定的准确度以及算法的计算速度和占用的计算资源:

  • 欧氏距离算法
  • 余弦距离算法
  • Jaccard距离算法
  • 皮尔逊距离算法
  • ……
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容