numpy中random模块使用

在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,下面我们学习一下具体的使用,本文着重说明各个分布随机数的生成。

numpy.random.rand()

  • rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1
  • 括号参数为生成随机数的维度
a = np.random.rand(4,2)
print(a)
#[[ 0.12531495  0.21084176]
# [ 0.49285425  0.71383499]
# [ 0.34699335  0.04372341]
# [ 0.15578197  0.43788198]]

numpy.random.randint()

  • 返回随机整数,范围区间为[low,high),包含low,不包含high
  • 参数:low为最小值,high为最大值,size为数组维度大小,dtype为数据类型,默认的数据类型是np.int
  • high没有填写时,默认生成随机数的范围是[0,low)
np.random.randint(1,5) # 返回1个[1,5)时间的随机整数
np.random.randint(-5,5,size=(2,2))

numpy.random.random(size=None)

np.random.random(size=(2,2))

numpy.random.randn()

  • randn函数返回一个或一组样本,具有标准正态分布
  • 标准正态分布又称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0,1)
np.random.randn(2,4)
#[[0.27795239, -2.57882503,  0.3817649 ,  1.42367345],
#       [-1.16724625, -0.22408299,  0.63006614, -0.41714538]]

np.random.normal(loc=0.0, scale=1.0, size=None)正态分布

  • loc:float概率分布的均值,对应着整个分布的中心center
  • scale:float概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高
  • size:int or tuple of ints输出的shape,默认为None,只输出一个值
  • np.random.randn(size)所谓标准正太分布(μ=0, σ=1),对应于np.random.normal(loc=0, scale=1, size)
mu, sigma = 0, 0.1 # mean and standard deviation
s = np.random.normal(mu, sigma, 1000)

numpy.random.exponential(scale=1.0, size=None)

  • 这里的scale是β,而β=1/λ

numpy.random.poisson(lam=1.0, size=None)

import numpy as np
s = np.random.poisson(5, 10000)
s = np.random.poisson(lam=(100., 500.), size=(100, 2))
#分别得到λ=100,500的数组,100为第一列,500为第二列

numpy.random.uniform(low=0.0, high=1.0, size=None)

  • 生成[a, b)的均匀分布
    s = np.random.uniform(-1,0,1000)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容