Python Pandas 向DataFrame中添加一行/一列

在Pandas的DataFrame中添加一行或者一列,添加行有df.loc[]以及df.append()这两种方法,添加列有df[]df.insert()两种方法, 下面对这几种方法的使用进行简单介绍。

一、添加行
  1. 添加一行,采用loc[]方法
# 构造一个空的dataframe
import pandas as pd
df = pd.DataFrame(columns=['name','number'])
# 采用.loc的方法进行
df.loc[0]=['cat', 3]  # 其中loc[]中需要加入的是插入地方dataframe的索引,默认是整数型
# 也可采用诸如df.loc['a'] = ['123',30]的形式

采用loc[]方法多适用于对空的dataframe循环遍历添加行,这样索引可以从0开始直到数据结果,不会存在索引冲突的问题。

  1. 添加一行或合并两个dataframe,采用append()方法
# 1. 采用append方法合并两个dataframe
# 构造两个dataframe
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
# 合并  ignore_index设置为 True可以重新排列索引
df.append(df2, ignore_index=True)
   A  B
0  1  2
1  3  4
2  5  6
3  7  8

# 2. 采用append方法添加多行
df = pd.DataFrame(columns=['A'])
for i in range(5):
    df = df.append({'A': i}, ignore_index=True)
df
   A
0  0
1  1
2  2
3  3
4  4
# 同样如果是遍历添加多行,有一种更高效的方法
pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
          ignore_index=True)
   A
0  0
1  1
2  2
3  3
4  4
二、添加列
  1. 新增一列,采用df[]方法直接在列上操作
# 新建一个dataframe
df = pd.DataFrame(columns=['name','number'], data=[['cat',3]])
df
  name  number
0  cat       3
# 添加一列,计算有多少条腿
df['leg'] = df['number'] * 4
# 添加一列,直接赋值有几个头
df['head'] = 1
df 
  name  number  leg  head
0  cat       3   12     1
  1. 添加一列,采用insert()方法
# 使用方法是DataFrame.insert(loc, column, value, allow_duplicates=False)
# 即df.insert(添加列位置索引序号,添加列名,数值,是否允许列名重复)
df.insert(1, 'tail', 1, allow_duplicates=False)
df
  name  tail  number  leg  head
0  cat     1       3   12     1

不过在使用insert的过程中发现454: DeprecationWarning: `input_splitter` is deprecated since IPython 7.0, prefer `input_transformer_manager`. status, indent_spaces = self.shell.input_splitter.check_complete(code)这个提示,猜测是有别的地方出问题了,还需要调试。

主要参考资料:

  1. pandas.DataFrame.append
  2. pandas.DataFrame.insert
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351